Напиши уравнение касательной к графику функции f(x)=x^2+3x+7 в точке с абсциссой x0=1.
Ответ: y=5x+6
Объяснение:
у=f(xo)+f'(xo)*(x-xo)
f(1)=1+3*1+7=11, f'(x)=2x+3, f'(xo)=2*1+3=5
y=11+5(x-1)=11+5x-5, y=5x+6