Полное решение в прикрепленном файле, здесь некоторые подробные расчеты пропущены, так как слишком длинное решение не хочет добавляться.
![\begin{cases} x'=4x+6y-\sin t\\ y'=3x+y+e^{5t} \end{cases} \begin{cases} x'=4x+6y-\sin t\\ y'=3x+y+e^{5t} \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%27%3D4x%2B6y-%5Csin%20t%5C%5C%20y%27%3D3x%2By%2Be%5E%7B5t%7D%20%5Cend%7Bcases%7D)
Продифференцируем первое уравнение:
![x''=4x'+6y'-\cos t x''=4x'+6y'-\cos t](https://tex.z-dn.net/?f=x%27%27%3D4x%27%2B6y%27-%5Ccos%20t)
Подставим выражение для y' из второго уравнения:
![x''=4x'+6(3x+y+e^{5t})-\cos t x''=4x'+6(3x+y+e^{5t})-\cos t](https://tex.z-dn.net/?f=x%27%27%3D4x%27%2B6%283x%2By%2Be%5E%7B5t%7D%29-%5Ccos%20t)
![x''=4x'+18x+6y+6e^{5t}-\cos t x''=4x'+18x+6y+6e^{5t}-\cos t](https://tex.z-dn.net/?f=x%27%27%3D4x%27%2B18x%2B6y%2B6e%5E%7B5t%7D-%5Ccos%20t)
От получившегося уравнения отнимем первое уравнение системы:
![x''-x'=4x'+18x+6y+6e^{5t}-\cos t-(4x+6y-\sin t) x''-x'=4x'+18x+6y+6e^{5t}-\cos t-(4x+6y-\sin t)](https://tex.z-dn.net/?f=x%27%27-x%27%3D4x%27%2B18x%2B6y%2B6e%5E%7B5t%7D-%5Ccos%20t-%284x%2B6y-%5Csin%20t%29)
![x''-x'=4x'+18x+6y+6e^{5t}-\cos t-4x-6y+\sin t x''-x'=4x'+18x+6y+6e^{5t}-\cos t-4x-6y+\sin t](https://tex.z-dn.net/?f=x%27%27-x%27%3D4x%27%2B18x%2B6y%2B6e%5E%7B5t%7D-%5Ccos%20t-4x-6y%2B%5Csin%20t)
![x''-5x'-14x=6e^{5t}+\sin t-\cos t x''-5x'-14x=6e^{5t}+\sin t-\cos t](https://tex.z-dn.net/?f=x%27%27-5x%27-14x%3D6e%5E%7B5t%7D%2B%5Csin%20t-%5Ccos%20t)
Решим однородное уравнение, соответствующее данному неоднородному:
![x''-5x'-14x=0 x''-5x'-14x=0](https://tex.z-dn.net/?f=x%27%27-5x%27-14x%3D0)
Составим характеристическое уравнение:
![\lambda^2-5\lambda-14=0 \lambda^2-5\lambda-14=0](https://tex.z-dn.net/?f=%5Clambda%5E2-5%5Clambda-14%3D0)
![\lambda_1=7;\ \lambda_2=-2 \lambda_1=7;\ \lambda_2=-2](https://tex.z-dn.net/?f=%5Clambda_1%3D7%3B%5C%20%5Clambda_2%3D-2)
![X=C_1e^{7t}+C_2e^{-2t} X=C_1e^{7t}+C_2e^{-2t}](https://tex.z-dn.net/?f=X%3DC_1e%5E%7B7t%7D%2BC_2e%5E%7B-2t%7D)
Предположим, что
и
не константы, а некоторые функции
и
.
Найдем первую производную:
![X'=C_1'e^{7t}+7C_1e^{7t}+C_2'e^{-2t}-2C_2e^{-2t} X'=C_1'e^{7t}+7C_1e^{7t}+C_2'e^{-2t}-2C_2e^{-2t}](https://tex.z-dn.net/?f=X%27%3DC_1%27e%5E%7B7t%7D%2B7C_1e%5E%7B7t%7D%2BC_2%27e%5E%7B-2t%7D-2C_2e%5E%7B-2t%7D)
Пусть
. Тогда:
![X'=7C_1e^{7t}-2C_2e^{-2t} X'=7C_1e^{7t}-2C_2e^{-2t}](https://tex.z-dn.net/?f=X%27%3D7C_1e%5E%7B7t%7D-2C_2e%5E%7B-2t%7D)
Найдем вторую производную:
![X''=7C_1'e^{7t}+49C_1e^{7t}-2C_2'e^{-2t}+4C_2e^{-2t} X''=7C_1'e^{7t}+49C_1e^{7t}-2C_2'e^{-2t}+4C_2e^{-2t}](https://tex.z-dn.net/?f=X%27%27%3D7C_1%27e%5E%7B7t%7D%2B49C_1e%5E%7B7t%7D-2C_2%27e%5E%7B-2t%7D%2B4C_2e%5E%7B-2t%7D)
Подставим значения функции и производных в уравнение относительно х:
![7C_1'e^{7t}+49C_1e^{7t}-2C_2'e^{-2t}+4C_2e^{-2t}-5(7C_1e^{7t}-2C_2e^{-2t})-\\-14(C_1e^{7t}+C_2e^{-2t})=6e^{5t}+\sin t-\cos t 7C_1'e^{7t}+49C_1e^{7t}-2C_2'e^{-2t}+4C_2e^{-2t}-5(7C_1e^{7t}-2C_2e^{-2t})-\\-14(C_1e^{7t}+C_2e^{-2t})=6e^{5t}+\sin t-\cos t](https://tex.z-dn.net/?f=7C_1%27e%5E%7B7t%7D%2B49C_1e%5E%7B7t%7D-2C_2%27e%5E%7B-2t%7D%2B4C_2e%5E%7B-2t%7D-5%287C_1e%5E%7B7t%7D-2C_2e%5E%7B-2t%7D%29-%5C%5C-14%28C_1e%5E%7B7t%7D%2BC_2e%5E%7B-2t%7D%29%3D6e%5E%7B5t%7D%2B%5Csin%20t-%5Ccos%20t)
![7C_1'e^{7t}+49C_1e^{7t}-2C_2'e^{-2t}+4C_2e^{-2t}-35C_1e^{7t}+10C_2e^{-2t}-\\-14C_1e^{7t}-14C_2e^{-2t}=6e^{5t}+\sin t-\cos t 7C_1'e^{7t}+49C_1e^{7t}-2C_2'e^{-2t}+4C_2e^{-2t}-35C_1e^{7t}+10C_2e^{-2t}-\\-14C_1e^{7t}-14C_2e^{-2t}=6e^{5t}+\sin t-\cos t](https://tex.z-dn.net/?f=7C_1%27e%5E%7B7t%7D%2B49C_1e%5E%7B7t%7D-2C_2%27e%5E%7B-2t%7D%2B4C_2e%5E%7B-2t%7D-35C_1e%5E%7B7t%7D%2B10C_2e%5E%7B-2t%7D-%5C%5C-14C_1e%5E%7B7t%7D-14C_2e%5E%7B-2t%7D%3D6e%5E%7B5t%7D%2B%5Csin%20t-%5Ccos%20t)
![7C_1'e^{7t}-2C_2'e^{-2t}=6e^{5t}+\sin t-\cos t 7C_1'e^{7t}-2C_2'e^{-2t}=6e^{5t}+\sin t-\cos t](https://tex.z-dn.net/?f=7C_1%27e%5E%7B7t%7D-2C_2%27e%5E%7B-2t%7D%3D6e%5E%7B5t%7D%2B%5Csin%20t-%5Ccos%20t)
Добавим к полученному уравнению условие, заданное на этапе нахождения первое производной:
![\begin{cases} C_1'e^{7t}+C_2'e^{-2t}=0 \\ 7C_1'e^{7t}-2C_2'e^{-2t}=6e^{5t}+\sin t-\cos t \end{cases} \begin{cases} C_1'e^{7t}+C_2'e^{-2t}=0 \\ 7C_1'e^{7t}-2C_2'e^{-2t}=6e^{5t}+\sin t-\cos t \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20C_1%27e%5E%7B7t%7D%2BC_2%27e%5E%7B-2t%7D%3D0%20%5C%5C%207C_1%27e%5E%7B7t%7D-2C_2%27e%5E%7B-2t%7D%3D6e%5E%7B5t%7D%2B%5Csin%20t-%5Ccos%20t%20%5Cend%7Bcases%7D)
Из первого уравнения выразим
:
![C_1'=-C_2'e^{-9t} C_1'=-C_2'e^{-9t}](https://tex.z-dn.net/?f=C_1%27%3D-C_2%27e%5E%7B-9t%7D)
Подставим во второе уравнение:
![-7C_2'e^{-9t}e^{7t}-2C_2'e^{-2t}=6e^{5t}+\sin t-\cos t -7C_2'e^{-9t}e^{7t}-2C_2'e^{-2t}=6e^{5t}+\sin t-\cos t](https://tex.z-dn.net/?f=-7C_2%27e%5E%7B-9t%7De%5E%7B7t%7D-2C_2%27e%5E%7B-2t%7D%3D6e%5E%7B5t%7D%2B%5Csin%20t-%5Ccos%20t)
![-9C_2'e^{-2t}=6e^{5t}+\sin t-\cos t -9C_2'e^{-2t}=6e^{5t}+\sin t-\cos t](https://tex.z-dn.net/?f=-9C_2%27e%5E%7B-2t%7D%3D6e%5E%7B5t%7D%2B%5Csin%20t-%5Ccos%20t)
![C_2'=-\dfrac{6e^{5t}+\sin t-\cos t}{9e^{-2t}} C_2'=-\dfrac{6e^{5t}+\sin t-\cos t}{9e^{-2t}}](https://tex.z-dn.net/?f=C_2%27%3D-%5Cdfrac%7B6e%5E%7B5t%7D%2B%5Csin%20t-%5Ccos%20t%7D%7B9e%5E%7B-2t%7D%7D)
![C_2'=-\dfrac{1}{9} \left(6e^{7t}+e^{2t}\sin t-e^{2t}\cos t\right) C_2'=-\dfrac{1}{9} \left(6e^{7t}+e^{2t}\sin t-e^{2t}\cos t\right)](https://tex.z-dn.net/?f=C_2%27%3D-%5Cdfrac%7B1%7D%7B9%7D%20%5Cleft%286e%5E%7B7t%7D%2Be%5E%7B2t%7D%5Csin%20t-e%5E%7B2t%7D%5Ccos%20t%5Cright%29)
Найдем
:
![C_1'=-C_2'e^{-9t}=\dfrac{1}{9} \left(6e^{-2t}+e^{-7t}\sin t-e^{-7t}\cos t\right) C_1'=-C_2'e^{-9t}=\dfrac{1}{9} \left(6e^{-2t}+e^{-7t}\sin t-e^{-7t}\cos t\right)](https://tex.z-dn.net/?f=C_1%27%3D-C_2%27e%5E%7B-9t%7D%3D%5Cdfrac%7B1%7D%7B9%7D%20%5Cleft%286e%5E%7B-2t%7D%2Be%5E%7B-7t%7D%5Csin%20t-e%5E%7B-7t%7D%5Ccos%20t%5Cright%29)
Необходимо проинтегрировать выражения для
и
. Для этого предварительно вычислим следующие циклические интегралы, пользуясь формулой интегрирования по частям:
![\int udv=uv-\int vdu \int udv=uv-\int vdu](https://tex.z-dn.net/?f=%5Cint%20udv%3Duv-%5Cint%20vdu)
1)
![\int e^{2t}\sin tdt=\dfrac{1}{5}e^{2t} (2\sin t-\cos t)+C \int e^{2t}\sin tdt=\dfrac{1}{5}e^{2t} (2\sin t-\cos t)+C](https://tex.z-dn.net/?f=%5Cint%20e%5E%7B2t%7D%5Csin%20tdt%3D%5Cdfrac%7B1%7D%7B5%7De%5E%7B2t%7D%20%282%5Csin%20t-%5Ccos%20t%29%2BC)
2)
![\int e^{2t}\cos tdt=\dfrac{1}{5}e^{2t} (\sin t+2\cos t)+C \int e^{2t}\cos tdt=\dfrac{1}{5}e^{2t} (\sin t+2\cos t)+C](https://tex.z-dn.net/?f=%5Cint%20e%5E%7B2t%7D%5Ccos%20tdt%3D%5Cdfrac%7B1%7D%7B5%7De%5E%7B2t%7D%20%28%5Csin%20t%2B2%5Ccos%20t%29%2BC)
3)
![\int e^{-7t}\sin tdt=-\dfrac{1}{50} e^{-7t}(7\sin t+\cos t)+C \int e^{-7t}\sin tdt=-\dfrac{1}{50} e^{-7t}(7\sin t+\cos t)+C](https://tex.z-dn.net/?f=%5Cint%20e%5E%7B-7t%7D%5Csin%20tdt%3D-%5Cdfrac%7B1%7D%7B50%7D%20e%5E%7B-7t%7D%287%5Csin%20t%2B%5Ccos%20t%29%2BC)
4)
![\int e^{-7t}\cos tdt=\dfrac{1}{50} e^{-7t}(\sin t-7\cos t)+C \int e^{-7t}\cos tdt=\dfrac{1}{50} e^{-7t}(\sin t-7\cos t)+C](https://tex.z-dn.net/?f=%5Cint%20e%5E%7B-7t%7D%5Ccos%20tdt%3D%5Cdfrac%7B1%7D%7B50%7D%20e%5E%7B-7t%7D%28%5Csin%20t-7%5Ccos%20t%29%2BC)
Интегрируем выражение для
:
![C_1=\dfrac{1}{9} \left(6\cdot \dfrac{1}{-2} e^{-2t}-\dfrac{1}{50} e^{-7t}(7\sin t+\cos t)-\dfrac{1}{50} e^{-7t}(\sin t-7\cos t)\right)+D_1 C_1=\dfrac{1}{9} \left(6\cdot \dfrac{1}{-2} e^{-2t}-\dfrac{1}{50} e^{-7t}(7\sin t+\cos t)-\dfrac{1}{50} e^{-7t}(\sin t-7\cos t)\right)+D_1](https://tex.z-dn.net/?f=C_1%3D%5Cdfrac%7B1%7D%7B9%7D%20%5Cleft%286%5Ccdot%20%5Cdfrac%7B1%7D%7B-2%7D%20e%5E%7B-2t%7D-%5Cdfrac%7B1%7D%7B50%7D%20e%5E%7B-7t%7D%287%5Csin%20t%2B%5Ccos%20t%29-%5Cdfrac%7B1%7D%7B50%7D%20e%5E%7B-7t%7D%28%5Csin%20t-7%5Ccos%20t%29%5Cright%29%2BD_1)
![C_1=-\dfrac{1}{3} e^{-2t}-\dfrac{1}{225} e^{-7t}(4\sin t-3\cos t)+D_1 C_1=-\dfrac{1}{3} e^{-2t}-\dfrac{1}{225} e^{-7t}(4\sin t-3\cos t)+D_1](https://tex.z-dn.net/?f=C_1%3D-%5Cdfrac%7B1%7D%7B3%7D%20e%5E%7B-2t%7D-%5Cdfrac%7B1%7D%7B225%7D%20e%5E%7B-7t%7D%284%5Csin%20t-3%5Ccos%20t%29%2BD_1)
Интегрируем выражение для
:
![C_2=-\dfrac{1}{9} \left(6\cdot\dfrac{1}{7} e^{7t}+\dfrac{1}{5} e^{2t}(2\sin t-\cos t)-\dfrac{1}{5}e^{2t} (\sin t+2\cos t)\right)+D_2 C_2=-\dfrac{1}{9} \left(6\cdot\dfrac{1}{7} e^{7t}+\dfrac{1}{5} e^{2t}(2\sin t-\cos t)-\dfrac{1}{5}e^{2t} (\sin t+2\cos t)\right)+D_2](https://tex.z-dn.net/?f=C_2%3D-%5Cdfrac%7B1%7D%7B9%7D%20%5Cleft%286%5Ccdot%5Cdfrac%7B1%7D%7B7%7D%20e%5E%7B7t%7D%2B%5Cdfrac%7B1%7D%7B5%7D%20e%5E%7B2t%7D%282%5Csin%20t-%5Ccos%20t%29-%5Cdfrac%7B1%7D%7B5%7De%5E%7B2t%7D%20%28%5Csin%20t%2B2%5Ccos%20t%29%5Cright%29%2BD_2)
![C_2=-\dfrac{2}{21} e^{7t}-\dfrac{1}{45} e^{2t}(\sin t-3\cos t)+D_2 C_2=-\dfrac{2}{21} e^{7t}-\dfrac{1}{45} e^{2t}(\sin t-3\cos t)+D_2](https://tex.z-dn.net/?f=C_2%3D-%5Cdfrac%7B2%7D%7B21%7D%20e%5E%7B7t%7D-%5Cdfrac%7B1%7D%7B45%7D%20e%5E%7B2t%7D%28%5Csin%20t-3%5Ccos%20t%29%2BD_2)
Подставляем выражения для
и
в решение:
![x=\left(-\dfrac{1}{3} e^{-2t}-\dfrac{1}{225} e^{-7t}(4\sin t-3\cos t)+D_1\right)e^{7t}+\\+\left(-\dfrac{2}{21} e^{7t}-\dfrac{1}{45} e^{2t}(\sin t-3\cos t)+D_2\right)e^{-2t} x=\left(-\dfrac{1}{3} e^{-2t}-\dfrac{1}{225} e^{-7t}(4\sin t-3\cos t)+D_1\right)e^{7t}+\\+\left(-\dfrac{2}{21} e^{7t}-\dfrac{1}{45} e^{2t}(\sin t-3\cos t)+D_2\right)e^{-2t}](https://tex.z-dn.net/?f=x%3D%5Cleft%28-%5Cdfrac%7B1%7D%7B3%7D%20e%5E%7B-2t%7D-%5Cdfrac%7B1%7D%7B225%7D%20e%5E%7B-7t%7D%284%5Csin%20t-3%5Ccos%20t%29%2BD_1%5Cright%29e%5E%7B7t%7D%2B%5C%5C%2B%5Cleft%28-%5Cdfrac%7B2%7D%7B21%7D%20e%5E%7B7t%7D-%5Cdfrac%7B1%7D%7B45%7D%20e%5E%7B2t%7D%28%5Csin%20t-3%5Ccos%20t%29%2BD_2%5Cright%29e%5E%7B-2t%7D)
![x=-\dfrac{1}{3} e^{5t}-\dfrac{1}{225} (4\sin t-3\cos t)+D_1e^{7t}-\dfrac{2}{21} e^{5t}-\dfrac{1}{45}(\sin t-3\cos t)+D_2e^{-2t} x=-\dfrac{1}{3} e^{5t}-\dfrac{1}{225} (4\sin t-3\cos t)+D_1e^{7t}-\dfrac{2}{21} e^{5t}-\dfrac{1}{45}(\sin t-3\cos t)+D_2e^{-2t}](https://tex.z-dn.net/?f=x%3D-%5Cdfrac%7B1%7D%7B3%7D%20e%5E%7B5t%7D-%5Cdfrac%7B1%7D%7B225%7D%20%284%5Csin%20t-3%5Ccos%20t%29%2BD_1e%5E%7B7t%7D-%5Cdfrac%7B2%7D%7B21%7D%20e%5E%7B5t%7D-%5Cdfrac%7B1%7D%7B45%7D%28%5Csin%20t-3%5Ccos%20t%29%2BD_2e%5E%7B-2t%7D)
![x=D_1e^{7t}+D_2e^{-2t}-\dfrac{3}{7} e^{5t}-\dfrac{1}{25} (\sin t-2\cos t) x=D_1e^{7t}+D_2e^{-2t}-\dfrac{3}{7} e^{5t}-\dfrac{1}{25} (\sin t-2\cos t)](https://tex.z-dn.net/?f=x%3DD_1e%5E%7B7t%7D%2BD_2e%5E%7B-2t%7D-%5Cdfrac%7B3%7D%7B7%7D%20e%5E%7B5t%7D-%5Cdfrac%7B1%7D%7B25%7D%20%28%5Csin%20t-2%5Ccos%20t%29)
Найдем производную:
![x'=7D_1e^{7t}-2D_2e^{-2t}-\dfrac{3}{7}\cdot5e^{5t}-\dfrac{1}{25} (\cos t+2\sin t) x'=7D_1e^{7t}-2D_2e^{-2t}-\dfrac{3}{7}\cdot5e^{5t}-\dfrac{1}{25} (\cos t+2\sin t)](https://tex.z-dn.net/?f=x%27%3D7D_1e%5E%7B7t%7D-2D_2e%5E%7B-2t%7D-%5Cdfrac%7B3%7D%7B7%7D%5Ccdot5e%5E%7B5t%7D-%5Cdfrac%7B1%7D%7B25%7D%20%28%5Ccos%20t%2B2%5Csin%20t%29)
![x'=7D_1e^{7t}-2D_2e^{-2t}-\dfrac{15}{7}e^{5t}-\dfrac{1}{25} (\cos t+2\sin t) x'=7D_1e^{7t}-2D_2e^{-2t}-\dfrac{15}{7}e^{5t}-\dfrac{1}{25} (\cos t+2\sin t)](https://tex.z-dn.net/?f=x%27%3D7D_1e%5E%7B7t%7D-2D_2e%5E%7B-2t%7D-%5Cdfrac%7B15%7D%7B7%7De%5E%7B5t%7D-%5Cdfrac%7B1%7D%7B25%7D%20%28%5Ccos%20t%2B2%5Csin%20t%29)
Из первого уравнения исходной системы выразим у:
![y=\dfrac{1}{6} \left(x'-4x+\sin t\right) y=\dfrac{1}{6} \left(x'-4x+\sin t\right)](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B1%7D%7B6%7D%20%5Cleft%28x%27-4x%2B%5Csin%20t%5Cright%29)
Подставляем выражения для х и х':
![y=\dfrac{1}{6} \left(7D_1e^{7t}-2D_2e^{-2t}-\dfrac{15}{7}e^{5t}-\dfrac{1}{25} (\cos t+2\sin t)- y=\dfrac{1}{6} \left(7D_1e^{7t}-2D_2e^{-2t}-\dfrac{15}{7}e^{5t}-\dfrac{1}{25} (\cos t+2\sin t)-](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B1%7D%7B6%7D%20%5Cleft%287D_1e%5E%7B7t%7D-2D_2e%5E%7B-2t%7D-%5Cdfrac%7B15%7D%7B7%7De%5E%7B5t%7D-%5Cdfrac%7B1%7D%7B25%7D%20%28%5Ccos%20t%2B2%5Csin%20t%29-)
![\left-4\left(D_1e^{7t}+D_2e^{-2t}-\dfrac{3}{7} e^{5t}-\dfrac{1}{25} (\sin t -2\cos t)\right)+\sin t\right)= \left-4\left(D_1e^{7t}+D_2e^{-2t}-\dfrac{3}{7} e^{5t}-\dfrac{1}{25} (\sin t -2\cos t)\right)+\sin t\right)=](https://tex.z-dn.net/?f=%5Cleft-4%5Cleft%28D_1e%5E%7B7t%7D%2BD_2e%5E%7B-2t%7D-%5Cdfrac%7B3%7D%7B7%7D%20e%5E%7B5t%7D-%5Cdfrac%7B1%7D%7B25%7D%20%28%5Csin%20t%20-2%5Ccos%20t%29%5Cright%29%2B%5Csin%20t%5Cright%29%3D)
![=\dfrac{1}{2} D_1e^{7t}-D_2e^{-2t}-\dfrac{1}{14}e^{5t}+\dfrac{1}{50} (9\sin t-3\cos t) =\dfrac{1}{2} D_1e^{7t}-D_2e^{-2t}-\dfrac{1}{14}e^{5t}+\dfrac{1}{50} (9\sin t-3\cos t)](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B1%7D%7B2%7D%20D_1e%5E%7B7t%7D-D_2e%5E%7B-2t%7D-%5Cdfrac%7B1%7D%7B14%7De%5E%7B5t%7D%2B%5Cdfrac%7B1%7D%7B50%7D%20%289%5Csin%20t-3%5Ccos%20t%29)
Ответ: ![\begin{cases} x=D_1e^{7t}+D_2e^{-2t}-\dfrac{3}{7} e^{5t}-\dfrac{1}{25} (\sin t-2\cos t) \\ y=\dfrac{1}{2} D_1e^{7t}-D_2e^{-2t}-\dfrac{1}{14}e^{5t}+\dfrac{1}{50} (9\sin t-3\cos t)\end{cases} \begin{cases} x=D_1e^{7t}+D_2e^{-2t}-\dfrac{3}{7} e^{5t}-\dfrac{1}{25} (\sin t-2\cos t) \\ y=\dfrac{1}{2} D_1e^{7t}-D_2e^{-2t}-\dfrac{1}{14}e^{5t}+\dfrac{1}{50} (9\sin t-3\cos t)\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%3DD_1e%5E%7B7t%7D%2BD_2e%5E%7B-2t%7D-%5Cdfrac%7B3%7D%7B7%7D%20e%5E%7B5t%7D-%5Cdfrac%7B1%7D%7B25%7D%20%28%5Csin%20t-2%5Ccos%20t%29%20%5C%5C%20y%3D%5Cdfrac%7B1%7D%7B2%7D%20D_1e%5E%7B7t%7D-D_2e%5E%7B-2t%7D-%5Cdfrac%7B1%7D%7B14%7De%5E%7B5t%7D%2B%5Cdfrac%7B1%7D%7B50%7D%20%289%5Csin%20t-3%5Ccos%20t%29%5Cend%7Bcases%7D)