Найти производные , 48б.

+425 голосов
4.3m просмотров

Найти производные , 48б.


image

Алгебра (20 баллов) | 4.3m просмотров
Дан 1 ответ
+40 голосов
Правильный ответ

Решите задачу:

1)\; \; f(x)=11x-6\; \; ,\qquad f'(x)=11\\\\2)\; \; f(x)=8-\dfrac{4}{5}\, x\; \; ,\qquad f'(x)=-\dfrac{4}{5}\\\\3)\; \; f(x)=5x^2-7x-18\; \; ,\; \; \; f'(x)=10x-7\\\\4)\; \; f(x)=3x^4-9x^2+8x+3\; \; ,\; \; \; f'(x)=12x^3-18x+8\\\\5)\; \; f(x)=5^{4x}-15x\; \; ,\; \; \; f'(x)=5^{4x}\, ln5\cdot 4-15\\\\6)\; \; f(x)=7-\dfrac{1}{3}\, e^{x}\; \; ,\; \; \; f'(x)=-\farc{1}{3}\, e^{x}\\\\7)\; \; f(x)=ln(13x-8)\; \; ,\; \; \; f'(x)=\dfrac{13}{13x-8}

8)\; \; f(x)=6\, ln(7-2x)\; \; ,\; \; \; f'(x)=6\cdot \dfrac{-2}{7-2x}=-\dfrac{12}{7-2x}\\\\9)\; \; f(x)=10\, log_2(9-5x)\; \; ,\; \; \; f'(x)=10\cdot \dfrac{-5}{(9-5x)ln2}=-\dfrac{50}{(9-5x)ln2}

(834k баллов)