Ответ:
∠XLM=27°
Объяснение:
Построение высоты LX.
KP - высота к стороне ML, МЕ - высота к стороне KL.
Мы знаем, что все 3 высоты треугольника пересекаются в одной точке. Чтобы найти эту точку, проводим прямые через высоту КР и высоту ML, которые пересекутся в точке О.
Высота LX тоже проходит через точку О. Поэтому соединяем точки L и О отрезком.
Через сторону КМ проводим прямую, которая пересечёт отрезок LO в точке X.
Отыскание угла XLM. Здесь достаточно того, что = 27°.
В самом деле, АРМК прямоугольный, а сумма острых углов прямоугольного треугольника - 90°. Поэтому PMK = 90° = 90° 27° = 63°
ZXML = ZPMC = 63°, т.к. это вертикальные углы.
AXML - тоже прямоугольный, и потому ZXLM = 90° - ZXML = 90° - 63° = 27°.
Для чего дано, что MP и KP = LX - непонятно. К тому же, если не знать, что это не помогло бы найти 2XLM.