![1)x^4+2x^2-3=0 1)x^4+2x^2-3=0](https://tex.z-dn.net/?f=1%29x%5E4%2B2x%5E2-3%3D0)
Замена: ![x^2=t, t\geq 0 x^2=t, t\geq 0](https://tex.z-dn.net/?f=x%5E2%3Dt%2C%20t%5Cgeq%200)
![t^2+2t-3=0;\\\\t_1=1, t_2=-3 t^2+2t-3=0;\\\\t_1=1, t_2=-3](https://tex.z-dn.net/?f=t%5E2%2B2t-3%3D0%3B%5C%5C%5C%5Ct_1%3D1%2C%20t_2%3D-3%3C0.)
Значит,
![t=1,\\\\x^2=1,\\\\x=\pm1 t=1,\\\\x^2=1,\\\\x=\pm1](https://tex.z-dn.net/?f=t%3D1%2C%5C%5C%5C%5Cx%5E2%3D1%2C%5C%5C%5C%5Cx%3D%5Cpm1)
ОТВЕТ: -1; 1.
![2)x^2-\frac{3}{x+3}=\frac{1}{x+3} 2)x^2-\frac{3}{x+3}=\frac{1}{x+3}](https://tex.z-dn.net/?f=2%29x%5E2-%5Cfrac%7B3%7D%7Bx%2B3%7D%3D%5Cfrac%7B1%7D%7Bx%2B3%7D)
ОДЗ:
. С учетом данного условия уравнение равносильно следующему:
![x^2=\frac{3}{x+3}+\frac{1}{x+3};\\\\x^2=\frac{4}{x+3};\\\\ x^2=\frac{3}{x+3}+\frac{1}{x+3};\\\\x^2=\frac{4}{x+3};\\\\](https://tex.z-dn.net/?f=x%5E2%3D%5Cfrac%7B3%7D%7Bx%2B3%7D%2B%5Cfrac%7B1%7D%7Bx%2B3%7D%3B%5C%5C%5C%5Cx%5E2%3D%5Cfrac%7B4%7D%7Bx%2B3%7D%3B%5C%5C%5C%5C)
Обе части умножим на
:
![x^2(x+3)=4;\\\\x^3+3x^2-4=0;\\\\x^3-x^2+4x^2-4=0;\\\\x^2(x-1)+4(x^2-1)=0;\\\\x^2(x-1)+4(x-1)(x+1)=0;\\\\(x-1)(x^2+4(x+1))=0;\\\\(x-1)(x^2+4x+4)=0\\\\(x-1)(x+2)^2=0 x^2(x+3)=4;\\\\x^3+3x^2-4=0;\\\\x^3-x^2+4x^2-4=0;\\\\x^2(x-1)+4(x^2-1)=0;\\\\x^2(x-1)+4(x-1)(x+1)=0;\\\\(x-1)(x^2+4(x+1))=0;\\\\(x-1)(x^2+4x+4)=0\\\\(x-1)(x+2)^2=0](https://tex.z-dn.net/?f=x%5E2%28x%2B3%29%3D4%3B%5C%5C%5C%5Cx%5E3%2B3x%5E2-4%3D0%3B%5C%5C%5C%5Cx%5E3-x%5E2%2B4x%5E2-4%3D0%3B%5C%5C%5C%5Cx%5E2%28x-1%29%2B4%28x%5E2-1%29%3D0%3B%5C%5C%5C%5Cx%5E2%28x-1%29%2B4%28x-1%29%28x%2B1%29%3D0%3B%5C%5C%5C%5C%28x-1%29%28x%5E2%2B4%28x%2B1%29%29%3D0%3B%5C%5C%5C%5C%28x-1%29%28x%5E2%2B4x%2B4%29%3D0%5C%5C%5C%5C%28x-1%29%28x%2B2%29%5E2%3D0)
Отсюда получаем два корня:
и
. Оба они удовлетворяют ОДЗ и идут в ответ.
ОТВЕТ: -2; 1.
![3)2(x-2)^2-3(x-2)+1=0 3)2(x-2)^2-3(x-2)+1=0](https://tex.z-dn.net/?f=3%292%28x-2%29%5E2-3%28x-2%29%2B1%3D0)
Можно решать заменой, но так как мне лень, привожу решение "в лоб":
![2(x^2-4x+4)-3(x-2)+1=0;\\\\2x^2-8x+8-3x+6+1=0;\\\\2x^2-11x+15=0;\\\\D=(-11)^2-4\cdot2\cdot15=121-120=1;\\\\x_{1,2}=\frac{-(-11)\pm\sqrt{1}}{2\cdot2}=\frac{11\pm1}{4}\\\\x_1=\frac{11+1}{4}=3,\\\\x_2=\frac{11-1}{4}=2,5 2(x^2-4x+4)-3(x-2)+1=0;\\\\2x^2-8x+8-3x+6+1=0;\\\\2x^2-11x+15=0;\\\\D=(-11)^2-4\cdot2\cdot15=121-120=1;\\\\x_{1,2}=\frac{-(-11)\pm\sqrt{1}}{2\cdot2}=\frac{11\pm1}{4}\\\\x_1=\frac{11+1}{4}=3,\\\\x_2=\frac{11-1}{4}=2,5](https://tex.z-dn.net/?f=2%28x%5E2-4x%2B4%29-3%28x-2%29%2B1%3D0%3B%5C%5C%5C%5C2x%5E2-8x%2B8-3x%2B6%2B1%3D0%3B%5C%5C%5C%5C2x%5E2-11x%2B15%3D0%3B%5C%5C%5C%5CD%3D%28-11%29%5E2-4%5Ccdot2%5Ccdot15%3D121-120%3D1%3B%5C%5C%5C%5Cx_%7B1%2C2%7D%3D%5Cfrac%7B-%28-11%29%5Cpm%5Csqrt%7B1%7D%7D%7B2%5Ccdot2%7D%3D%5Cfrac%7B11%5Cpm1%7D%7B4%7D%5C%5C%5C%5Cx_1%3D%5Cfrac%7B11%2B1%7D%7B4%7D%3D3%2C%5C%5C%5C%5Cx_2%3D%5Cfrac%7B11-1%7D%7B4%7D%3D2%2C5)
ОТВЕТ: 2,5; 3.