1. Метод исключения неизвестных.
![\begin{cases} x'=5x+3y \\ y'=4x+y \end{cases} \begin{cases} x'=5x+3y \\ y'=4x+y \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%27%3D5x%2B3y%20%5C%5C%20y%27%3D4x%2By%20%5Cend%7Bcases%7D)
Продифференцируем первое уравнение:
![x''=5x'+3y' x''=5x'+3y'](https://tex.z-dn.net/?f=x%27%27%3D5x%27%2B3y%27)
Подставим выражение для y':
![x''=5x'+3(4x+y) x''=5x'+3(4x+y)](https://tex.z-dn.net/?f=x%27%27%3D5x%27%2B3%284x%2By%29)
![x''=5x'+12x+3y x''=5x'+12x+3y](https://tex.z-dn.net/?f=x%27%27%3D5x%27%2B12x%2B3y)
Из получившегося уравнения отнимем первое уравнение системы:
![x''-x'=5x'+12x+3y-5x-3y x''-x'=5x'+12x+3y-5x-3y](https://tex.z-dn.net/?f=x%27%27-x%27%3D5x%27%2B12x%2B3y-5x-3y)
![x''-6x'-7x=0 x''-6x'-7x=0](https://tex.z-dn.net/?f=x%27%27-6x%27-7x%3D0)
Составим характеристическое уравнение:
![\lambda^2-6\lambda-7=0 \lambda^2-6\lambda-7=0](https://tex.z-dn.net/?f=%5Clambda%5E2-6%5Clambda-7%3D0)
![\lambda_1=-1;\ \lambda_2=7 \lambda_1=-1;\ \lambda_2=7](https://tex.z-dn.net/?f=%5Clambda_1%3D-1%3B%5C%20%5Clambda_2%3D7)
![x=C_1e^{-t}+C_2e^{7t} x=C_1e^{-t}+C_2e^{7t}](https://tex.z-dn.net/?f=x%3DC_1e%5E%7B-t%7D%2BC_2e%5E%7B7t%7D)
Найдем производную:
![x'=-C_1e^{-t}+7C_2e^{7t} x'=-C_1e^{-t}+7C_2e^{7t}](https://tex.z-dn.net/?f=x%27%3D-C_1e%5E%7B-t%7D%2B7C_2e%5E%7B7t%7D)
Выразим из первого уравнение системы у:
![y=\dfrac{1}{3} (x'-5x) y=\dfrac{1}{3} (x'-5x)](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B1%7D%7B3%7D%20%28x%27-5x%29)
![y=\dfrac{-C_1e^{-t}+7C_2e^{7t}-5(C_1e^{-t}+C_2e^{7t})}{3} y=\dfrac{-C_1e^{-t}+7C_2e^{7t}-5(C_1e^{-t}+C_2e^{7t})}{3}](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B-C_1e%5E%7B-t%7D%2B7C_2e%5E%7B7t%7D-5%28C_1e%5E%7B-t%7D%2BC_2e%5E%7B7t%7D%29%7D%7B3%7D)
![y=\dfrac{-C_1e^{-t}+7C_2e^{7t}-5C_1e^{-t}-5C_2e^{7t}}{3} y=\dfrac{-C_1e^{-t}+7C_2e^{7t}-5C_1e^{-t}-5C_2e^{7t}}{3}](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B-C_1e%5E%7B-t%7D%2B7C_2e%5E%7B7t%7D-5C_1e%5E%7B-t%7D-5C_2e%5E%7B7t%7D%7D%7B3%7D)
![y=\dfrac{-6C_1e^{-t}+2C_2e^{7t}}{3} y=\dfrac{-6C_1e^{-t}+2C_2e^{7t}}{3}](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7B-6C_1e%5E%7B-t%7D%2B2C_2e%5E%7B7t%7D%7D%7B3%7D)
![y=-2C_1e^{-t}+\dfrac{2}{3}C_2e^{7t} y=-2C_1e^{-t}+\dfrac{2}{3}C_2e^{7t}](https://tex.z-dn.net/?f=y%3D-2C_1e%5E%7B-t%7D%2B%5Cdfrac%7B2%7D%7B3%7DC_2e%5E%7B7t%7D)
Общее решение:
![\begin{cases} x=C_1e^{-t}+C_2e^{7t}\\ y=-2C_1e^{-t}+\dfrac{2}{3}C_2e^{7t}\end{cases} \begin{cases} x=C_1e^{-t}+C_2e^{7t}\\ y=-2C_1e^{-t}+\dfrac{2}{3}C_2e^{7t}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%3DC_1e%5E%7B-t%7D%2BC_2e%5E%7B7t%7D%5C%5C%20y%3D-2C_1e%5E%7B-t%7D%2B%5Cdfrac%7B2%7D%7B3%7DC_2e%5E%7B7t%7D%5Cend%7Bcases%7D)
Находим решение задачи Коши:
![\begin{cases} C_1e^{-0}+C_2e^{7\cdot0t}=2\\ -2C_1e^{-0}+\dfrac{2}{3}C_2e^{7\cdot0}=-3\end{cases} \begin{cases} C_1e^{-0}+C_2e^{7\cdot0t}=2\\ -2C_1e^{-0}+\dfrac{2}{3}C_2e^{7\cdot0}=-3\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20C_1e%5E%7B-0%7D%2BC_2e%5E%7B7%5Ccdot0t%7D%3D2%5C%5C%20-2C_1e%5E%7B-0%7D%2B%5Cdfrac%7B2%7D%7B3%7DC_2e%5E%7B7%5Ccdot0%7D%3D-3%5Cend%7Bcases%7D)
![\begin{cases} C_1+C_2=2\\ -2C_1+\dfrac{2}{3}C_2=-3\end{cases} \begin{cases} C_1+C_2=2\\ -2C_1+\dfrac{2}{3}C_2=-3\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20C_1%2BC_2%3D2%5C%5C%20-2C_1%2B%5Cdfrac%7B2%7D%7B3%7DC_2%3D-3%5Cend%7Bcases%7D)
Первое уравнение домножим на 2:
![\begin{cases} 2C_1+2C_2=4\\ -2C_1+\dfrac{2}{3}C_2=-3\end{cases} \begin{cases} 2C_1+2C_2=4\\ -2C_1+\dfrac{2}{3}C_2=-3\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%202C_1%2B2C_2%3D4%5C%5C%20-2C_1%2B%5Cdfrac%7B2%7D%7B3%7DC_2%3D-3%5Cend%7Bcases%7D)
Сложим уравнения:
![\dfrac{8}{3}C_2=1 \dfrac{8}{3}C_2=1](https://tex.z-dn.net/?f=%5Cdfrac%7B8%7D%7B3%7DC_2%3D1)
![C_2=\dfrac{3}{8} C_2=\dfrac{3}{8}](https://tex.z-dn.net/?f=C_2%3D%5Cdfrac%7B3%7D%7B8%7D)
Выразим
:
![C_1=2-C_2=2-\dfrac{3}{8} =\dfrac{13}{8} C_1=2-C_2=2-\dfrac{3}{8} =\dfrac{13}{8}](https://tex.z-dn.net/?f=C_1%3D2-C_2%3D2-%5Cdfrac%7B3%7D%7B8%7D%20%3D%5Cdfrac%7B13%7D%7B8%7D)
Частное решение:
![\begin{cases} x=\dfrac{13}{8}e^{-t}+\dfrac{3}{8}e^{7t}\\ y=-2\cdot \dfrac{13}{8}C_1e^{-t}+\dfrac{2}{3}\cdot \dfrac{3}{8}e^{7t}\end{cases} \begin{cases} x=\dfrac{13}{8}e^{-t}+\dfrac{3}{8}e^{7t}\\ y=-2\cdot \dfrac{13}{8}C_1e^{-t}+\dfrac{2}{3}\cdot \dfrac{3}{8}e^{7t}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%3D%5Cdfrac%7B13%7D%7B8%7De%5E%7B-t%7D%2B%5Cdfrac%7B3%7D%7B8%7De%5E%7B7t%7D%5C%5C%20y%3D-2%5Ccdot%20%5Cdfrac%7B13%7D%7B8%7DC_1e%5E%7B-t%7D%2B%5Cdfrac%7B2%7D%7B3%7D%5Ccdot%20%5Cdfrac%7B3%7D%7B8%7De%5E%7B7t%7D%5Cend%7Bcases%7D)
![\begin{cases} x=\dfrac{13}{8}e^{-t}+\dfrac{3}{8}e^{7t}\\ y=-\dfrac{13}{4}C_1e^{-t}+\dfrac{1}{4}e^{7t}\end{cases} \begin{cases} x=\dfrac{13}{8}e^{-t}+\dfrac{3}{8}e^{7t}\\ y=-\dfrac{13}{4}C_1e^{-t}+\dfrac{1}{4}e^{7t}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%3D%5Cdfrac%7B13%7D%7B8%7De%5E%7B-t%7D%2B%5Cdfrac%7B3%7D%7B8%7De%5E%7B7t%7D%5C%5C%20y%3D-%5Cdfrac%7B13%7D%7B4%7DC_1e%5E%7B-t%7D%2B%5Cdfrac%7B1%7D%7B4%7De%5E%7B7t%7D%5Cend%7Bcases%7D)
2. Метод характеристических уравнений (метод Эйлера).
![\begin{cases} x'=5x+3y \\ y'=4x+y \end{cases} \begin{cases} x'=5x+3y \\ y'=4x+y \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%27%3D5x%2B3y%20%5C%5C%20y%27%3D4x%2By%20%5Cend%7Bcases%7D)
Матрица из коэффициентов при неизвестных:
![A=\left(\begin{array}{ccc}5&3\\4&1\end{array}\right) A=\left(\begin{array}{ccc}5&3\\4&1\end{array}\right)](https://tex.z-dn.net/?f=A%3D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D5%263%5C%5C4%261%5Cend%7Barray%7D%5Cright%29)
Характеристическая матрица:
![A-kE=\left(\begin{array}{ccc}5-k&3\\4&1-k\end{array}\right) A-kE=\left(\begin{array}{ccc}5-k&3\\4&1-k\end{array}\right)](https://tex.z-dn.net/?f=A-kE%3D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D5-k%263%5C%5C4%261-k%5Cend%7Barray%7D%5Cright%29)
Характеристическое уравнение:
![\left|\begin{array}{ccc}5-k&3\\4&1-k\end{array}\right|=0 \left|\begin{array}{ccc}5-k&3\\4&1-k\end{array}\right|=0](https://tex.z-dn.net/?f=%5Cleft%7C%5Cbegin%7Barray%7D%7Bccc%7D5-k%263%5C%5C4%261-k%5Cend%7Barray%7D%5Cright%7C%3D0)
![(5-k)(1-k)-3\cdot4=0 (5-k)(1-k)-3\cdot4=0](https://tex.z-dn.net/?f=%285-k%29%281-k%29-3%5Ccdot4%3D0)
![5-5k-k+k^2-12=0 5-5k-k+k^2-12=0](https://tex.z-dn.net/?f=5-5k-k%2Bk%5E2-12%3D0)
![k^2-6k-7=0 k^2-6k-7=0](https://tex.z-dn.net/?f=k%5E2-6k-7%3D0)
![k_1=-1;\ k_2=7 k_1=-1;\ k_2=7](https://tex.z-dn.net/?f=k_1%3D-1%3B%5C%20k_2%3D7)
Общее решение:
![\begin{cases} x=C_1x_1+C_2x_2\\ y=C_1y_1+C_2y_2\end{cases} \begin{cases} x=C_1x_1+C_2x_2\\ y=C_1y_1+C_2y_2\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%3DC_1x_1%2BC_2x_2%5C%5C%20y%3DC_1y_1%2BC_2y_2%5Cend%7Bcases%7D)
Ищем фундаментальную систему решений:
![x_1=p_{11}e^{k_1t} x_1=p_{11}e^{k_1t}](https://tex.z-dn.net/?f=x_1%3Dp_%7B11%7De%5E%7Bk_1t%7D)
![y_1=p_{12}e^{k_1t} y_1=p_{12}e^{k_1t}](https://tex.z-dn.net/?f=y_1%3Dp_%7B12%7De%5E%7Bk_1t%7D)
![x_2=p_{21}e^{k_2t} x_2=p_{21}e^{k_2t}](https://tex.z-dn.net/?f=x_2%3Dp_%7B21%7De%5E%7Bk_2t%7D)
![y_2=p_{22}e^{k_2t} y_2=p_{22}e^{k_2t}](https://tex.z-dn.net/?f=y_2%3Dp_%7B22%7De%5E%7Bk_2t%7D)
Для нахождения чисел
составим систему:
![\begin{cases} (5-k)p_{1}+3p_2=0 \\ 4p_1+(1-k)p_{2}=0\end{cases} \begin{cases} (5-k)p_{1}+3p_2=0 \\ 4p_1+(1-k)p_{2}=0\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20%285-k%29p_%7B1%7D%2B3p_2%3D0%20%5C%5C%204p_1%2B%281-k%29p_%7B2%7D%3D0%5Cend%7Bcases%7D)
Для
:
![\begin{cases} 6p_{11}+3p_{12}=0 \\ 4p_{11}+2p_{12}=0\end{cases} \begin{cases} 6p_{11}+3p_{12}=0 \\ 4p_{11}+2p_{12}=0\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%206p_%7B11%7D%2B3p_%7B12%7D%3D0%20%5C%5C%204p_%7B11%7D%2B2p_%7B12%7D%3D0%5Cend%7Bcases%7D)
Оба уравнения дают:
![2p_{11}+p_{12}=0 2p_{11}+p_{12}=0](https://tex.z-dn.net/?f=2p_%7B11%7D%2Bp_%7B12%7D%3D0)
![p_{12}=-2p_{11} p_{12}=-2p_{11}](https://tex.z-dn.net/?f=p_%7B12%7D%3D-2p_%7B11%7D)
Найдем ненулевое решение. Пусть
. Тогда
.
Для
:
![\begin{cases} -2p_{21}+3p_{22}=0 \\ 4p_{21}-6p_{22}=0\end{cases} \begin{cases} -2p_{21}+3p_{22}=0 \\ 4p_{21}-6p_{22}=0\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20-2p_%7B21%7D%2B3p_%7B22%7D%3D0%20%5C%5C%204p_%7B21%7D-6p_%7B22%7D%3D0%5Cend%7Bcases%7D)
Оба уравнения дают:
![2p_{21}-3p_{22}=0 2p_{21}-3p_{22}=0](https://tex.z-dn.net/?f=2p_%7B21%7D-3p_%7B22%7D%3D0)
![p_{21}=\dfrac{3}{2} p_{22} p_{21}=\dfrac{3}{2} p_{22}](https://tex.z-dn.net/?f=p_%7B21%7D%3D%5Cdfrac%7B3%7D%7B2%7D%20p_%7B22%7D)
Найдем ненулевое решение. Пусть
. Тогда
.
Фундаментальная система решений найдена:
![x_1=e^{-t} x_1=e^{-t}](https://tex.z-dn.net/?f=x_1%3De%5E%7B-t%7D)
![y_1=-2e^{-t} y_1=-2e^{-t}](https://tex.z-dn.net/?f=y_1%3D-2e%5E%7B-t%7D)
![x_2=\dfrac{3}{2}e^{7t} x_2=\dfrac{3}{2}e^{7t}](https://tex.z-dn.net/?f=x_2%3D%5Cdfrac%7B3%7D%7B2%7De%5E%7B7t%7D)
![y_2= e^{7t} y_2= e^{7t}](https://tex.z-dn.net/?f=y_2%3D%20e%5E%7B7t%7D)
Общее решение:
![\begin{cases} x=C_1e^{-t}+\dfrac{3}{2}C_2e^{7t}\\ y=-2C_1e^{-t}+C_2e^{7t}\end{cases} \begin{cases} x=C_1e^{-t}+\dfrac{3}{2}C_2e^{7t}\\ y=-2C_1e^{-t}+C_2e^{7t}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%3DC_1e%5E%7B-t%7D%2B%5Cdfrac%7B3%7D%7B2%7DC_2e%5E%7B7t%7D%5C%5C%20y%3D-2C_1e%5E%7B-t%7D%2BC_2e%5E%7B7t%7D%5Cend%7Bcases%7D)
Находим частное решение:
![\begin{cases} C_1e^{0}+\dfrac{3}{2}C_2e^{0}=2\\ -2C_1e^{0}+C_2e^{0}=-3\end{cases} \begin{cases} C_1e^{0}+\dfrac{3}{2}C_2e^{0}=2\\ -2C_1e^{0}+C_2e^{0}=-3\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20C_1e%5E%7B0%7D%2B%5Cdfrac%7B3%7D%7B2%7DC_2e%5E%7B0%7D%3D2%5C%5C%20-2C_1e%5E%7B0%7D%2BC_2e%5E%7B0%7D%3D-3%5Cend%7Bcases%7D)
![\begin{cases} C_1+\dfrac{3}{2}C_2=2\\ -2C_1+C_2=-3\end{cases} \begin{cases} C_1+\dfrac{3}{2}C_2=2\\ -2C_1+C_2=-3\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20C_1%2B%5Cdfrac%7B3%7D%7B2%7DC_2%3D2%5C%5C%20-2C_1%2BC_2%3D-3%5Cend%7Bcases%7D)
Первое уравнение домножим на 2:
![\begin{cases} 2C_1+3C_2=4\\ -2C_1+C_2=-3\end{cases} \begin{cases} 2C_1+3C_2=4\\ -2C_1+C_2=-3\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%202C_1%2B3C_2%3D4%5C%5C%20-2C_1%2BC_2%3D-3%5Cend%7Bcases%7D)
Сложим уравнения:
![4C_2=1 4C_2=1](https://tex.z-dn.net/?f=4C_2%3D1)
![C_2=\dfrac{1}{4} C_2=\dfrac{1}{4}](https://tex.z-dn.net/?f=C_2%3D%5Cdfrac%7B1%7D%7B4%7D)
Выразим
:
![C_1=2-\dfrac{3}{2}C_2=2-\dfrac{3}{2}\cdot\dfrac{1}{4}=2- \dfrac{3}{8} = \dfrac{13}{8} C_1=2-\dfrac{3}{2}C_2=2-\dfrac{3}{2}\cdot\dfrac{1}{4}=2- \dfrac{3}{8} = \dfrac{13}{8}](https://tex.z-dn.net/?f=C_1%3D2-%5Cdfrac%7B3%7D%7B2%7DC_2%3D2-%5Cdfrac%7B3%7D%7B2%7D%5Ccdot%5Cdfrac%7B1%7D%7B4%7D%3D2-%20%5Cdfrac%7B3%7D%7B8%7D%20%3D%20%5Cdfrac%7B13%7D%7B8%7D)
Частное решение:
![\begin{cases} x=\dfrac{13}{8}e^{-t}+\dfrac{3}{2}\cdot\dfrac{1}{4}e^{7t}\\ y=-2\cdot\dfrac{13}{8}e^{-t}+\dfrac{1}{4}e^{7t}\end{cases} \begin{cases} x=\dfrac{13}{8}e^{-t}+\dfrac{3}{2}\cdot\dfrac{1}{4}e^{7t}\\ y=-2\cdot\dfrac{13}{8}e^{-t}+\dfrac{1}{4}e^{7t}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%20x%3D%5Cdfrac%7B13%7D%7B8%7De%5E%7B-t%7D%2B%5Cdfrac%7B3%7D%7B2%7D%5Ccdot%5Cdfrac%7B1%7D%7B4%7De%5E%7B7t%7D%5C%5C%20y%3D-2%5Ccdot%5Cdfrac%7B13%7D%7B8%7De%5E%7B-t%7D%2B%5Cdfrac%7B1%7D%7B4%7De%5E%7B7t%7D%5Cend%7Bcases%7D)
<img src="ht