Решите уравнение 2/(1-cos(2x+pi/3))=sin(x+pi/6)

0 голосов
24 просмотров

Решите уравнение 2/(1-cos(2x+pi/3))=sin(x+pi/6)


Алгебра (70 баллов) | 24 просмотров
Дан 1 ответ
0 голосов

2 = sin(x + \frac{\pi}{6})(1 - cos({2x + \frac{\pi}{3}))

2 = sin(x+\frac{\pi}{6}) - sin(x + \frac{\pi}{6})cos2(x + \frac{\pi}{6})

2 = sin(x + \frac{\pi}{6}) - sin(x+\frac{\pi}{6})(1 - sin^{2}(x+\frac{\pi}{6}))

2 = sin(x + \frac{\pi}{6}) - sin(x + \frac{\pi}{6}) - 2sin^{3}(x + \frac{\pi}{6})

2sin^{3}(x + \frac{\pi}{6}) = 2

sin(x + \frac{\pi}{6}) = 1

x + \frac{\pi}{6} = \frac{\pi}{2} + 2\pi k

x = \frac{\pi}{2} - \frac{\pi}{6} + 2\pi k

x = \frac{\pi}{3} + 2\pi k, k ∈ Z

(694 баллов)