Ответ:
Объяснение:
С(-3;2) и Д(4;-3) даны. Точка М лежащая на ординате имеет координату х=0, а координату у так и назовем - у. Тогда М(0;у). Она должна быть равноудалена от точек С и Д, то есть расстояние должно быть одно и то же.
d₁ =
d₂ =
Возведем оба уравнения в квадрат и приравняв правые части получим
9+у² -4у + 4 = 16 + у² + 6у +9
10у=-12
у=-1,2
Значит координаты точки М(0;-1,2)
Расстояние до начала координат такое же
d= |-1,2| = 1,2
Вторая задача. Вектор С не имеет никакого отношения к векторам
а и b и к их разности a-b. Поэтому координаты этого вектора никак не влияют на модуль вектора a-b
Найдем его. Что бы вычесть вектор из вектора надо вычесть соответствующие координаты и мы найдем координаты получившегося вектора.
a-b == (-7-1;4-3)=(-8;1)
Теперь найдем модуль, то есть длину:
d=
Это модуль вектора a-b и он от координат вектора с не зависит