0\end{array}\right\\\\\\\left\{\begin{array}{l}x\in (-\infty ;1\, ]\cup [\, 5;+\infty )\\x>0\end{array}\right\; \; \; \to \; \; \; x\in (\; 0\, ;1\, ]\cup [\, 5;+\infty \, )" alt="1)\; \; x^2-2x-34-10x\end{array}\right\; \; \left\{\begin{array}{l}(x-1)(x-5)\geq 0\\17x>0\end{array}\right\\\\\\\left\{\begin{array}{l}x\in (-\infty ;1\, ]\cup [\, 5;+\infty )\\x>0\end{array}\right\; \; \; \to \; \; \; x\in (\; 0\, ;1\, ]\cup [\, 5;+\infty \, )" align="absmiddle" class="latex-formula">
0\end{array}\right\; \; \left\{\begin{array}{ccc}3x^2-7x+4\geq 0\\2(x-1)(x+2,5)>0\end{array}\right\; \; \left\{\begin{array}{ccc}3(x-1)(x-\frac{4}{3})\geq 0\\2(x-1)(x+2,5)>0\end{array}\right\\\\\\\star \; \; 3x^2-7x+4=0\; \; ,\; \; D=1\; ,\; \; x_1=1\; ,\; x_2=\frac{4}{3}\\\\\star \; \; 2x^2+3x-5=0\; \; ,\; \; D=49\; \; x_1=1\; ,\; \; x_2=-2,5" alt="4)\; \; \left\{\begin{array}{ccc}7x-4-3x^2\leq 0\\2x^2+3x-5>0\end{array}\right\; \; \left\{\begin{array}{ccc}3x^2-7x+4\geq 0\\2(x-1)(x+2,5)>0\end{array}\right\; \; \left\{\begin{array}{ccc}3(x-1)(x-\frac{4}{3})\geq 0\\2(x-1)(x+2,5)>0\end{array}\right\\\\\\\star \; \; 3x^2-7x+4=0\; \; ,\; \; D=1\; ,\; \; x_1=1\; ,\; x_2=\frac{4}{3}\\\\\star \; \; 2x^2+3x-5=0\; \; ,\; \; D=49\; \; x_1=1\; ,\; \; x_2=-2,5" align="absmiddle" class="latex-formula">