у = х³ + 6х² + 9х
Производная
у' = 3х² + 12х + 9
Приравниваем производную к нулю
3х² + 12х + 9 = 0
или
х² + 4х + 3 = 0
D = 16 - 12 = 4
х1 = (-4 - 2)/2 = -3
х2 = (-4 + 2)/2 = - 1
По свойствам графика производной у' = 3х² + 12х + 9, она имеет следующие знаки в промежутках
-----(+)----- -3 ------(-)-------- -1 --------(+)----------
Поэтому функция возрастет при х∈(-∞; -3) U (-1: +∞)
и убывает в интервале х∈(-3; -1)