Ответ:
[-9; 9]
Объяснение:
0\\x^2\leq 81\end{cases}=> \begin{cases}x^2-2\cdot2,5x+6,25+0,75>0\\|x|\leq \sqrt{81}\end{cases}=> \\ \begin{cases}(x-2,5)^2+0,75>0\quad\quad (1)\\|x|\leq \sqrt{81} |x|\leq9\quad \:(2)\end{cases}=> ... \\" alt="\begin{cases}x^2-5x+7>0\\x^2\leq 81\end{cases}=> \begin{cases}x^2-2\cdot2,5x+6,25+0,75>0\\|x|\leq \sqrt{81}\end{cases}=> \\ \begin{cases}(x-2,5)^2+0,75>0\quad\quad (1)\\|x|\leq \sqrt{81} |x|\leq9\quad \:(2)\end{cases}=> ... \\" align="absmiddle" class="latex-formula">
(x-2,5)^2+0,75>0 \:\:\forall {x} \in R" alt="(x-2,5)^2\geq 0 => (x-2,5)^2+0,75>0 \:\:\forall {x} \in R" align="absmiddle" class="latex-formula">
(2)
![|x|\leq 9 \begin{cases}x\leq 9, npu \:x\geq 0\\-x\leq 9, \:\: npu\:x |x|\leq 9 \begin{cases}x\leq 9, npu \:x\geq 0\\-x\leq 9, \:\: npu\:x](https://tex.z-dn.net/?f=%7Cx%7C%5Cleq%209%20%3C%3D%3E%20%5Cbegin%7Bcases%7Dx%5Cleq%209%2C%20npu%20%5C%3Ax%5Cgeq%200%5C%5C-x%5Cleq%209%2C%20%5C%3A%5C%3A%20npu%5C%3Ax%3C0%5Cend%7Bcases%7D%3C%3D%3E%20%5Cbegin%7Bcases%7D0%5Cleq%20x%5Cleq%209%2C%20%5C%5C-9%5Cleq%20x%3C0%20%5Cend%7Bcases%7D%3D%3E%20x%20%5Cin%20%5B-9%3B%20%5C%3A%209%5D)
\begin{cases}(x-2,5)^2+0,75>0\quad\quad (1)\\|x|\leq \sqrt{81} |x|\leq9\quad \:(2)\end{cases}=> \begin{cases}(x \in R, \\ x \in [-9;\: 9]\end{cases}=> x \in [-9;\: 9]" alt="...=>\begin{cases}(x-2,5)^2+0,75>0\quad\quad (1)\\|x|\leq \sqrt{81} |x|\leq9\quad \:(2)\end{cases}=> \begin{cases}(x \in R, \\ x \in [-9;\: 9]\end{cases}=> x \in [-9;\: 9]" align="absmiddle" class="latex-formula">