Точки О (0;0), С (5;4), Д (14;5) и А являются вершинами параллелограмма. Найдите абсциссу точки А
Объяснение:
1 способ.
ОСДА-параллелограмм. В- точка пересечения диагоналей.
Диагонали точкой пересечения делятся пополам . Найдем координаты точки В по формулам середины отрезка для ОД : В( 7 ; 2,5 )
С( 5 ; 4). В-середина АС ,найдем координаты т В
х(В)= (х(С)+х(А) )/2 у(В)= (у(С)+у(А) )/2
2*х(В)= х(С)+х(А) 2*у(В)= у(С)+у(А)
х(А) = 2*х(В)-х(С) у(А) = 2*у(В)-у(С)
х(А) = 14-5 у(А) = 5-4
х(А) = 9 у(А) =1
А(9 ; 1). Абсцисса точки 9
2 способ.
Точка С может быть получена параллельным переносом точки О на вектор ОС . Вектор ОС( 5-0 ;4-0) или ОС(5;4), т.е х увеличилась на 5, у увеличилась на 4.
С точками А и Д при параллельном переносе происходит аналогично. Поэтому , чтобы найти координаты т. А нужно координаты Д(14;5)
- х уменьшить на 5;
- у уменьшить на 4
А (14-5 : 5-4) , А(9;1) . Абсцисса точки А число 9.
( За 2 способ спасибо Ужнеужели)