Вычислите площадь фигуры, ограниченной линиями: а) у = х^2 , х = 1, х = 3, у = 0; б)...

+372 голосов
5.6m просмотров

Вычислите площадь фигуры, ограниченной линиями: а) у = х^2 , х = 1, х = 3, у = 0; б) y=x^2-2x+2; y=0 в) y=2x^2, y=2x


Алгебра (21 баллов) | 5.6m просмотров
Дан 1 ответ
+140 голосов

Ответ: \frac{36}{3} ;; \frac{1}{3}

Объяснение:

a)

В этом задании требуется найти определенный интеграл на отрезке x ∈ (1,3). Находим первообразную:

F(x) = \int {x^2} \, dx = \frac{x^3}{3} + C

Подставляем в нее границы интегрирования, чтобы найти определенный интеграл:

\int\limits^3_1 {x^2} \, dx = F(3) - F(1) = \frac{26}{3}

б)

Тоже самое что и в задании а). Находим первообразную функции:

F(x) = \int {x^2-2x+2} \, dx = \int {x^2} \, dx + \int {-2x} \, dx + \int {2} \, dx = \frac{x^3}{3} - x^2 + 2x + C

Подставляем в первообразную границы интегрирования. Они определяются через пресечение параболой оси OY:

x^2-2x+2 = 0\\x \ is \ not\ rational

Мы получили, что нет таких точек, которые бы удовлетворяли уравнению, а значит, нет пересечения с OY и площадь ⇒∞.

в)

Находим первообразные для каждой из написанных функций:

F_{1} (x) = \int {2x^2} \, dx = \frac{2}{3} x^3 + C_{1}\\F_{2}(x) = \int {2x} \, dx = x^2 + C_{2}

Теперь находим пересечение двух графиков функций. Это и будут границы интегрирования:

2x^2 = 2x\\x^2-x = 0\\x(x-1) = 0\\x = 0;1

Находим площади под каждой из двух функций при помощи определенного интеграла:

S_{1} = \int\limits^1_0 {2x^2} \, dx = F_{1}(1) - F_{1}(0) = \frac{2}{3} \\S_{2} = \int\limits^1_0 {2x} \, dx = F_{2}(1) - F_{2}(0) = 1

Теперь, чтобы найти общую площадь фигуры вычитаем из большей площади меньшую:

S = S_{2} - S_{1} =1-\frac{2}{3} = \frac{1}{3}

(151k баллов)
+87

нет

+103

..?

+33

У тебя нет ошибок в условии б)