![1) \ y = \left(3x^{2} - \dfrac{5}{x^{3}} + 1 \right)^{4} = \left(3x^{2} - 5x^{-3} + 1 \right)^{4} 1) \ y = \left(3x^{2} - \dfrac{5}{x^{3}} + 1 \right)^{4} = \left(3x^{2} - 5x^{-3} + 1 \right)^{4}](https://tex.z-dn.net/?f=1%29%20%5C%20y%20%3D%20%5Cleft%283x%5E%7B2%7D%20-%20%5Cdfrac%7B5%7D%7Bx%5E%7B3%7D%7D%20%2B%201%20%5Cright%29%5E%7B4%7D%20%3D%20%5Cleft%283x%5E%7B2%7D%20-%205x%5E%7B-3%7D%20%2B%201%20%5Cright%29%5E%7B4%7D)
Воспользуемся следующими правилами и формулами дифференцирования:
![(u^{a})' = au^{a-1} \cdot u', \ a \in R (u^{a})' = au^{a-1} \cdot u', \ a \in R](https://tex.z-dn.net/?f=%28u%5E%7Ba%7D%29%27%20%3D%20au%5E%7Ba-1%7D%20%5Ccdot%20u%27%2C%20%5C%20a%20%5Cin%20R)
![C' = 0 C' = 0](https://tex.z-dn.net/?f=C%27%20%3D%200)
![(Cu)' =Cu' (Cu)' =Cu'](https://tex.z-dn.net/?f=%28Cu%29%27%20%3DCu%27)
![(u \pm v)' = u'v + uv' (u \pm v)' = u'v + uv'](https://tex.z-dn.net/?f=%28u%20%5Cpm%20v%29%27%20%3D%20u%27v%20%2B%20uv%27)
![y' = 4 \cdot \left(3x^{2} - \dfrac{5}{x^{3}} + 1 \right)^{4 -1 } \cdot \left(3x^{2} - \dfrac{5}{x^{3}} + 1 \right)' = 4\left(3x^{2} - \dfrac{5}{x^{3}} + 1 \right)^{3 }\left(6x + \dfrac{15}{x^{4}}\right) y' = 4 \cdot \left(3x^{2} - \dfrac{5}{x^{3}} + 1 \right)^{4 -1 } \cdot \left(3x^{2} - \dfrac{5}{x^{3}} + 1 \right)' = 4\left(3x^{2} - \dfrac{5}{x^{3}} + 1 \right)^{3 }\left(6x + \dfrac{15}{x^{4}}\right)](https://tex.z-dn.net/?f=y%27%20%3D%204%20%5Ccdot%20%5Cleft%283x%5E%7B2%7D%20-%20%5Cdfrac%7B5%7D%7Bx%5E%7B3%7D%7D%20%2B%201%20%5Cright%29%5E%7B4%20-1%20%7D%20%5Ccdot%20%5Cleft%283x%5E%7B2%7D%20-%20%5Cdfrac%7B5%7D%7Bx%5E%7B3%7D%7D%20%2B%201%20%5Cright%29%27%20%3D%204%5Cleft%283x%5E%7B2%7D%20-%20%5Cdfrac%7B5%7D%7Bx%5E%7B3%7D%7D%20%2B%201%20%5Cright%29%5E%7B3%20%7D%5Cleft%286x%20%2B%20%5Cdfrac%7B15%7D%7Bx%5E%7B4%7D%7D%5Cright%29)
![2) \ y = \dfrac{\sqrt{4x^{5} - 2}}{\sin 7x} = \dfrac{(4x^{5} - 2)^{\frac{1}{2} }}{\sin 7x} 2) \ y = \dfrac{\sqrt{4x^{5} - 2}}{\sin 7x} = \dfrac{(4x^{5} - 2)^{\frac{1}{2} }}{\sin 7x}](https://tex.z-dn.net/?f=2%29%20%5C%20y%20%3D%20%5Cdfrac%7B%5Csqrt%7B4x%5E%7B5%7D%20-%202%7D%7D%7B%5Csin%207x%7D%20%3D%20%5Cdfrac%7B%284x%5E%7B5%7D%20-%202%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%7D%7B%5Csin%207x%7D)
Воспользуемся следующими правилами и формулами дифференцирования:
![(\sin u)' = \cos u \cdot u' (\sin u)' = \cos u \cdot u'](https://tex.z-dn.net/?f=%28%5Csin%20u%29%27%20%3D%20%5Ccos%20u%20%5Ccdot%20u%27)
![\left(\dfrac{u}{v} \right)' = \dfrac{u'v - uv'}{v^{2}} , \ v \neq 0 \left(\dfrac{u}{v} \right)' = \dfrac{u'v - uv'}{v^{2}} , \ v \neq 0](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7Bu%7D%7Bv%7D%20%20%5Cright%29%27%20%3D%20%5Cdfrac%7Bu%27v%20-%20uv%27%7D%7Bv%5E%7B2%7D%7D%20%2C%20%5C%20v%20%5Cneq%200)
![y' = \dfrac{\left((4x^{5} - 2)^{\frac{1}{2} }\right)'\sin 7x - (4x^{5} - 2)^{\frac{1}{2}}(\sin 7x)'}{(\sin 7x)^{2}} = y' = \dfrac{\left((4x^{5} - 2)^{\frac{1}{2} }\right)'\sin 7x - (4x^{5} - 2)^{\frac{1}{2}}(\sin 7x)'}{(\sin 7x)^{2}} =](https://tex.z-dn.net/?f=y%27%20%3D%20%5Cdfrac%7B%5Cleft%28%284x%5E%7B5%7D%20-%202%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%5Cright%29%27%5Csin%207x%20-%20%284x%5E%7B5%7D%20-%202%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%28%5Csin%207x%29%27%7D%7B%28%5Csin%207x%29%5E%7B2%7D%7D%20%20%3D)
![= \dfrac{\dfrac{1}{2}(4x^{5} - 2)^{\frac{1}{2} - 1 } \cdot (4x^{5} - 2)' \cdot \sin 7x - \sqrt{4x^{5} - 2}\cos 7x \cdot (7x)'}{\sin^{2} 7x} = = \dfrac{\dfrac{1}{2}(4x^{5} - 2)^{\frac{1}{2} - 1 } \cdot (4x^{5} - 2)' \cdot \sin 7x - \sqrt{4x^{5} - 2}\cos 7x \cdot (7x)'}{\sin^{2} 7x} =](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B%5Cdfrac%7B1%7D%7B2%7D%284x%5E%7B5%7D%20-%202%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20-%201%20%7D%20%5Ccdot%20%284x%5E%7B5%7D%20-%202%29%27%20%5Ccdot%20%5Csin%207x%20-%20%5Csqrt%7B4x%5E%7B5%7D%20-%202%7D%5Ccos%207x%20%5Ccdot%20%287x%29%27%7D%7B%5Csin%5E%7B2%7D%207x%7D%20%3D)
![= \dfrac{10x^{4}\sin 7x - 7(4x^{5} - 2)\cos 7x}{\sin^{2} 7x \sqrt{4x^{5} - 2}} = \dfrac{10x^{4}\sin 7x - 7(4x^{5} - 2)\cos 7x}{\sin^{2} 7x \sqrt{4x^{5} - 2}}](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B10x%5E%7B4%7D%5Csin%207x%20-%207%284x%5E%7B5%7D%20-%202%29%5Ccos%207x%7D%7B%5Csin%5E%7B2%7D%207x%20%5Csqrt%7B4x%5E%7B5%7D%20-%202%7D%7D)
![3) \ y = 2^{\text{arctg} \, x} \cdot \arcsin 2x 3) \ y = 2^{\text{arctg} \, x} \cdot \arcsin 2x](https://tex.z-dn.net/?f=3%29%20%5C%20y%20%3D%202%5E%7B%5Ctext%7Barctg%7D%20%5C%2C%20x%7D%20%5Ccdot%20%5Carcsin%202x)
Воспользуемся следующими правилами и формулами дифференцирования:
![(a^{u})' = a^{u} \ln a \cdot u' (a^{u})' = a^{u} \ln a \cdot u'](https://tex.z-dn.net/?f=%28a%5E%7Bu%7D%29%27%20%3D%20a%5E%7Bu%7D%20%5Cln%20a%20%5Ccdot%20u%27)
![(\arcsin u)' = \dfrac{1}{\sqrt{1 - u^{2}}} \cdot u' (\arcsin u)' = \dfrac{1}{\sqrt{1 - u^{2}}} \cdot u'](https://tex.z-dn.net/?f=%28%5Carcsin%20u%29%27%20%3D%20%5Cdfrac%7B1%7D%7B%5Csqrt%7B1%20-%20u%5E%7B2%7D%7D%7D%20%5Ccdot%20u%27)
![(\text{arctg} \, u)' = \dfrac{1}{1 + u^{2}} \cdot u' (\text{arctg} \, u)' = \dfrac{1}{1 + u^{2}} \cdot u'](https://tex.z-dn.net/?f=%28%5Ctext%7Barctg%7D%20%5C%2C%20u%29%27%20%3D%20%5Cdfrac%7B1%7D%7B1%20%2B%20u%5E%7B2%7D%7D%20%5Ccdot%20u%27)
![(u \cdot v)' = u'v + uv' (u \cdot v)' = u'v + uv'](https://tex.z-dn.net/?f=%28u%20%5Ccdot%20v%29%27%20%3D%20u%27v%20%2B%20uv%27)
![y' = 2^{\text{arctg} \, x} \ln 2 \cdot (\text{arctg} \, x)' \cdot \arcsin x + 2^{\text{arctg} \, x} \cdot \dfrac{1}{\sqrt{1 - (2x)^{2}}} \cdot (2x)' = y' = 2^{\text{arctg} \, x} \ln 2 \cdot (\text{arctg} \, x)' \cdot \arcsin x + 2^{\text{arctg} \, x} \cdot \dfrac{1}{\sqrt{1 - (2x)^{2}}} \cdot (2x)' =](https://tex.z-dn.net/?f=y%27%20%3D%202%5E%7B%5Ctext%7Barctg%7D%20%5C%2C%20x%7D%20%5Cln%202%20%5Ccdot%20%28%5Ctext%7Barctg%7D%20%5C%2C%20x%29%27%20%5Ccdot%20%5Carcsin%20x%20%2B%202%5E%7B%5Ctext%7Barctg%7D%20%5C%2C%20x%7D%20%5Ccdot%20%5Cdfrac%7B1%7D%7B%5Csqrt%7B1%20-%20%282x%29%5E%7B2%7D%7D%7D%20%5Ccdot%20%282x%29%27%20%3D)
![= \dfrac{2^{\text{arctg} \, x} \ln 2 \cdot \arcsin x}{1 + x^{2}} + \dfrac{2^{\text{arctg} \, x + 1}}{\sqrt{1 - 4x^{2}}} = \dfrac{2^{\text{arctg} \, x} \ln 2 \cdot \arcsin x}{1 + x^{2}} + \dfrac{2^{\text{arctg} \, x + 1}}{\sqrt{1 - 4x^{2}}}](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B2%5E%7B%5Ctext%7Barctg%7D%20%5C%2C%20x%7D%20%5Cln%202%20%5Ccdot%20%5Carcsin%20x%7D%7B1%20%2B%20x%5E%7B2%7D%7D%20%2B%20%5Cdfrac%7B2%5E%7B%5Ctext%7Barctg%7D%20%5C%2C%20x%20%2B%201%7D%7D%7B%5Csqrt%7B1%20-%204x%5E%7B2%7D%7D%7D)
![4) \ y = \ln (\cos 6x) 4) \ y = \ln (\cos 6x)](https://tex.z-dn.net/?f=4%29%20%5C%20y%20%3D%20%5Cln%20%28%5Ccos%206x%29)
Воспользуемся следующими формулами дифференцирования:
![(\ln u)' = \dfrac{1}{u} \cdot u' (\ln u)' = \dfrac{1}{u} \cdot u'](https://tex.z-dn.net/?f=%28%5Cln%20u%29%27%20%3D%20%5Cdfrac%7B1%7D%7Bu%7D%20%5Ccdot%20u%27)
![(\cos u)' = -\sin u \cdot u' (\cos u)' = -\sin u \cdot u'](https://tex.z-dn.net/?f=%28%5Ccos%20u%29%27%20%3D%20-%5Csin%20u%20%5Ccdot%20u%27)
![y' = \dfrac{1}{\cos 6x} \cdot (\cos 6x)' = -\dfrac{\sin 6x}{\cos 6x} \cdot (6x)' = - 6 \, \text{tg} \, 6x y' = \dfrac{1}{\cos 6x} \cdot (\cos 6x)' = -\dfrac{\sin 6x}{\cos 6x} \cdot (6x)' = - 6 \, \text{tg} \, 6x](https://tex.z-dn.net/?f=y%27%20%3D%20%5Cdfrac%7B1%7D%7B%5Ccos%206x%7D%20%5Ccdot%20%28%5Ccos%206x%29%27%20%3D%20%20-%5Cdfrac%7B%5Csin%206x%7D%7B%5Ccos%206x%7D%20%5Ccdot%20%286x%29%27%20%3D%20-%206%20%5C%2C%20%5Ctext%7Btg%7D%20%5C%2C%206x)
В формулах и правилах
— постоянная.