![f(x)=\left\{\begin{array}{l}0\ ,\ x\leq -\dfrac{\pi}{2}\ ,\\sinx\ ,\ -\dfrac{\pi}{2}0\ .\end{array}\right\\\\\\\int \limits _{-\infty}^{+\infty }f(x)\, dx=1\ \ \ \Rightarrow \ \ \ \ \int \limits _{-\infty}^{+\infty }f(x)\, dx=\int\limits^{0}_{-\pi /2}\, sinx\, dx =-cosx\Big|_{-\pi /2}^0=\\\\=-cos\, 0+cos(-\dfrac{\pi}{2})=-1+0=-1\ne 1\ \ \Rightarrow f(x)=\left\{\begin{array}{l}0\ ,\ x\leq -\dfrac{\pi}{2}\ ,\\sinx\ ,\ -\dfrac{\pi}{2}0\ .\end{array}\right\\\\\\\int \limits _{-\infty}^{+\infty }f(x)\, dx=1\ \ \ \Rightarrow \ \ \ \ \int \limits _{-\infty}^{+\infty }f(x)\, dx=\int\limits^{0}_{-\pi /2}\, sinx\, dx =-cosx\Big|_{-\pi /2}^0=\\\\=-cos\, 0+cos(-\dfrac{\pi}{2})=-1+0=-1\ne 1\ \ \Rightarrow](https://tex.z-dn.net/?f=f%28x%29%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D0%5C%20%2C%5C%20x%5Cleq%20-%5Cdfrac%7B%5Cpi%7D%7B2%7D%5C%20%2C%5C%5Csinx%5C%20%2C%5C%20-%5Cdfrac%7B%5Cpi%7D%7B2%7D%3Cx%5Cleq%200%5C%20%2C%5C%5C0%5C%20%2C%5C%20x%3E0%5C%20.%5Cend%7Barray%7D%5Cright%5C%5C%5C%5C%5C%5C%5Cint%20%5Climits%20_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%20%7Df%28x%29%5C%2C%20dx%3D1%5C%20%5C%20%5C%20%5CRightarrow%20%5C%20%5C%20%5C%20%5C%20%5Cint%20%5Climits%20_%7B-%5Cinfty%7D%5E%7B%2B%5Cinfty%20%7Df%28x%29%5C%2C%20dx%3D%5Cint%5Climits%5E%7B0%7D_%7B-%5Cpi%20%2F2%7D%5C%2C%20sinx%5C%2C%20dx%20%3D-cosx%5CBig%7C_%7B-%5Cpi%20%2F2%7D%5E0%3D%5C%5C%5C%5C%3D-cos%5C%2C%200%2Bcos%28-%5Cdfrac%7B%5Cpi%7D%7B2%7D%29%3D-1%2B0%3D-1%5Cne%201%5C%20%5C%20%5CRightarrow)
Заданная функция не является плотностью распределения вероятностей. Наверное, пропустили минус перед sinx .
![f(x)=\left\{\begin{array}{l}0\ ,\ x\leq -\dfrac{\pi}{2}\ ,\\-sinx\ ,\ -\dfrac{\pi}{2}0\ .\end{array}\right\\\\\\F(x)=\int \limits _{-\infty }^{x}\, f(t)\, dt\\\\\\a)\ \ x\leq -\dfrac{\pi }{2}\ ,\ f(x)=0:\ \ F(x)=\int \limits _{-\infty }^{x}\, 0\, dt=0\\\\b)\ \ -\dfrac{\pi}{2} f(x)=\left\{\begin{array}{l}0\ ,\ x\leq -\dfrac{\pi}{2}\ ,\\-sinx\ ,\ -\dfrac{\pi}{2}0\ .\end{array}\right\\\\\\F(x)=\int \limits _{-\infty }^{x}\, f(t)\, dt\\\\\\a)\ \ x\leq -\dfrac{\pi }{2}\ ,\ f(x)=0:\ \ F(x)=\int \limits _{-\infty }^{x}\, 0\, dt=0\\\\b)\ \ -\dfrac{\pi}{2}](https://tex.z-dn.net/?f=f%28x%29%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D0%5C%20%2C%5C%20x%5Cleq%20-%5Cdfrac%7B%5Cpi%7D%7B2%7D%5C%20%2C%5C%5C-sinx%5C%20%2C%5C%20-%5Cdfrac%7B%5Cpi%7D%7B2%7D%3Cx%5Cleq%200%5C%20%2C%5C%5C0%5C%20%2C%5C%20x%3E0%5C%20.%5Cend%7Barray%7D%5Cright%5C%5C%5C%5C%5C%5CF%28x%29%3D%5Cint%20%5Climits%20_%7B-%5Cinfty%20%7D%5E%7Bx%7D%5C%2C%20f%28t%29%5C%2C%20dt%5C%5C%5C%5C%5C%5Ca%29%5C%20%5C%20x%5Cleq%20-%5Cdfrac%7B%5Cpi%20%7D%7B2%7D%5C%20%2C%5C%20f%28x%29%3D0%3A%5C%20%5C%20F%28x%29%3D%5Cint%20%5Climits%20_%7B-%5Cinfty%20%7D%5E%7Bx%7D%5C%2C%200%5C%2C%20dt%3D0%5C%5C%5C%5Cb%29%5C%20%5C%20-%5Cdfrac%7B%5Cpi%7D%7B2%7D%3Cx%5Cleq%200%5C%20%2C%5C%20f%28x%29%3D-sinx%3A%5C%20%5C%20F%28x%29%3D%5Cint%5Climits_%7B-%5Cinfty%20%7D%5E%7B-%5Cpi%20%2F2%7D%5C%2C%200%5C%2C%20dt%2B%5Cint%5Climits_%7B0%7D%5E%7Bx%7D%5C%2C%20%28-sint%29%5C%2C%20dt%3D%5C%5C%5C%5C%5C%5C%3D0%2Bcost%5CBig%7C_0%5E%7Bx%7D%3Dcosx-cos0%3Dcosx-1)
0\ ,\ f(x)=0:\ \ F(x)=\int\limits^{-\pi /2}_{-\infty }\, 0\, dt+\int\limits_{-\pi /2}^0\, (-sint)\, dt+\int\limits^{x}_{0}\, 0\, dt=\\\\\\=cost\Big|_{-\pi /2}^0=cos0-cos(-\dfrac{\pi}{2})=1+0=1" alt="c)\ \ x>0\ ,\ f(x)=0:\ \ F(x)=\int\limits^{-\pi /2}_{-\infty }\, 0\, dt+\int\limits_{-\pi /2}^0\, (-sint)\, dt+\int\limits^{x}_{0}\, 0\, dt=\\\\\\=cost\Big|_{-\pi /2}^0=cos0-cos(-\dfrac{\pi}{2})=1+0=1" align="absmiddle" class="latex-formula">
![F(x)=\left\{\begin{array}{l}0\ ,\ x\leq -\dfrac{\pi}{2}\ ,\\cosx-1\ ,\ -\dfrac{\pi}{2}0\ .\end{array}\right F(x)=\left\{\begin{array}{l}0\ ,\ x\leq -\dfrac{\pi}{2}\ ,\\cosx-1\ ,\ -\dfrac{\pi}{2}0\ .\end{array}\right](https://tex.z-dn.net/?f=F%28x%29%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D0%5C%20%2C%5C%20x%5Cleq%20-%5Cdfrac%7B%5Cpi%7D%7B2%7D%5C%20%2C%5C%5Ccosx-1%5C%20%2C%5C%20-%5Cdfrac%7B%5Cpi%7D%7B2%7D%3Cx%5Cleq%200%5C%20%2C%5C%5C1%5C%20%2C%5C%20x%3E0%5C%20.%5Cend%7Barray%7D%5Cright)