Катеты прямоугольного треугольника относятся как 3 : 4 , гипотенуза равна 20 см. Найдите площадь этого треуголника.
Можно пожалуйста расписать все подробно с Дано и т.д, спасибо большое за ранее)
Дано: АВС- прямоугольный треугольник СА:СВ= 3:4 ВА=20см. ---------- S-? _____________________________________ Решение: Рассмотрим треугольник АВС. Примем одну часть за "х", у нас получиться что сторона ВС=3х, а сторона СА=4х. Но в прямоугольном треугольнике действует теорема Пифагора(квадрат гипотенузы равен сумме квадратов катетов). В нашем случае получается: подставляем числа и у нас получается и получается: И так, одна часть (х)=4 Т.к. у нас стороны относятся как у нас 3х- сторона СА, то она равна 4•3=12 СВ=4*4=16 Найдём площадь. ПЛощадь равна половине произведения основания на высоту. Высота в прямоугольном треугольнике является катет, который образует угол 90 градусов, т.е. СВ. см в квадрате.