Ответ:
Пошаговое объяснение:
на отрезке [-1;3]
Найдем значение функции на концах отрезка:
![y(-1)=\frac{-4-1}{1+3}=-\frac{5}{4}=-1\frac{1}{4}\\y(3)=\frac{12-1}{9+3}=\frac{11}{12} y(-1)=\frac{-4-1}{1+3}=-\frac{5}{4}=-1\frac{1}{4}\\y(3)=\frac{12-1}{9+3}=\frac{11}{12}](https://tex.z-dn.net/?f=y%28-1%29%3D%5Cfrac%7B-4-1%7D%7B1%2B3%7D%3D-%5Cfrac%7B5%7D%7B4%7D%3D-1%5Cfrac%7B1%7D%7B4%7D%5C%5Cy%283%29%3D%5Cfrac%7B12-1%7D%7B9%2B3%7D%3D%5Cfrac%7B11%7D%7B12%7D)
Найдем производную
![y'(x)=\frac{4(x^2+3)-(4x-1)*2x}{(x^2+3)^2}=\frac{4x^2+12-8x^2+2x}{(x^2+3)^2}=\frac{-2(2x^2-x-6)}{(x^2+3)^2} \\y'(x)=0\\-2(2x^2-x-6)=0\\\\x_{1,2}=\frac{1^+_-\sqrt{1+48} }{4}=\frac{1^+_-7}{4}\\ x_1=2\\ x_2=-\frac{3}{2} \\ y'(x)=\frac{4(x^2+3)-(4x-1)*2x}{(x^2+3)^2}=\frac{4x^2+12-8x^2+2x}{(x^2+3)^2}=\frac{-2(2x^2-x-6)}{(x^2+3)^2} \\y'(x)=0\\-2(2x^2-x-6)=0\\\\x_{1,2}=\frac{1^+_-\sqrt{1+48} }{4}=\frac{1^+_-7}{4}\\ x_1=2\\ x_2=-\frac{3}{2} \\](https://tex.z-dn.net/?f=y%27%28x%29%3D%5Cfrac%7B4%28x%5E2%2B3%29-%284x-1%29%2A2x%7D%7B%28x%5E2%2B3%29%5E2%7D%3D%5Cfrac%7B4x%5E2%2B12-8x%5E2%2B2x%7D%7B%28x%5E2%2B3%29%5E2%7D%3D%5Cfrac%7B-2%282x%5E2-x-6%29%7D%7B%28x%5E2%2B3%29%5E2%7D%20%5C%5Cy%27%28x%29%3D0%5C%5C-2%282x%5E2-x-6%29%3D0%5C%5C%5C%5Cx_%7B1%2C2%7D%3D%5Cfrac%7B1%5E%2B_-%5Csqrt%7B1%2B48%7D%20%7D%7B4%7D%3D%5Cfrac%7B1%5E%2B_-7%7D%7B4%7D%5C%5C%20x_1%3D2%5C%5C%20x_2%3D-%5Cfrac%7B3%7D%7B2%7D%20%5C%5C)
___(-)___[-(3/2)]___(+)___[2]___(-)____
Если производная меняет знак с "-" на "+", то в точке х=-(3/2) будет min. В [-1;3] не входит
Если с "+" на "-", то в точке х=2 - max
![y(2)=\frac{8-1}{4+3}=1 y(2)=\frac{8-1}{4+3}=1](https://tex.z-dn.net/?f=y%282%29%3D%5Cfrac%7B8-1%7D%7B4%2B3%7D%3D1)
![y_{min}=y(-1)=-1\frac{1}{4}\\y_{max}=y(2)=1 y_{min}=y(-1)=-1\frac{1}{4}\\y_{max}=y(2)=1](https://tex.z-dn.net/?f=y_%7Bmin%7D%3Dy%28-1%29%3D-1%5Cfrac%7B1%7D%7B4%7D%5C%5Cy_%7Bmax%7D%3Dy%282%29%3D1)