Решим неравенство 0" alt="f'(x) > 0" align="absmiddle" class="latex-formula">, то есть 0" alt="27x^{2} + 6x > 0" align="absmiddle" class="latex-formula">
0" alt="27x^{2} + 6x > 0" align="absmiddle" class="latex-formula">
0" alt="3x(9x + 2) > 0" align="absmiddle" class="latex-formula">
0, \ \ \ \ \, } \atop {9x + 2 > 0}} \right. \\\displaystyle \left \{ {{3x < 0, \ \ \ \ \, } \atop {9x + 2 < 0}} \right.\\\end{array}\right \ \ \ \ \ \ \ \left[\begin{array}{ccc}\displaystyle \left \{ {{x > 0, \ \ \, } \atop {x > -\dfrac{2}{9} }} \right. \\\displaystyle \left \{ {{x < 0, \ \ \, } \atop {x < -\dfrac{2}{9}}} \right.\\\end{array}\right \ \ \ \ \ \left[\begin{array}{ccc}x > 0, \ \ \\x < -\dfrac{2}{9} \\\end{array}\right" alt="\left[\begin{array}{ccc}\displaystyle \left \{ {{3x > 0, \ \ \ \ \, } \atop {9x + 2 > 0}} \right. \\\displaystyle \left \{ {{3x < 0, \ \ \ \ \, } \atop {9x + 2 < 0}} \right.\\\end{array}\right \ \ \ \ \ \ \ \left[\begin{array}{ccc}\displaystyle \left \{ {{x > 0, \ \ \, } \atop {x > -\dfrac{2}{9} }} \right. \\\displaystyle \left \{ {{x < 0, \ \ \, } \atop {x < -\dfrac{2}{9}}} \right.\\\end{array}\right \ \ \ \ \ \left[\begin{array}{ccc}x > 0, \ \ \\x < -\dfrac{2}{9} \\\end{array}\right" align="absmiddle" class="latex-formula">
Ответ: