![z = \dfrac{1}{2} xy + (47 - x - y)\left(\dfrac{x}{3} + \dfrac{y}{4} \right) = \dfrac{1}{2} xy + \dfrac{47}{3}x + \dfrac{47}{4}y - \dfrac{x^{2}}{3} - \dfrac{xy}{4} - \dfrac{xy}{3} - \dfrac{y^{2}}{4} = z = \dfrac{1}{2} xy + (47 - x - y)\left(\dfrac{x}{3} + \dfrac{y}{4} \right) = \dfrac{1}{2} xy + \dfrac{47}{3}x + \dfrac{47}{4}y - \dfrac{x^{2}}{3} - \dfrac{xy}{4} - \dfrac{xy}{3} - \dfrac{y^{2}}{4} =](https://tex.z-dn.net/?f=z%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20xy%20%2B%20%2847%20-%20x%20-%20y%29%5Cleft%28%5Cdfrac%7Bx%7D%7B3%7D%20%2B%20%5Cdfrac%7By%7D%7B4%7D%20%20%5Cright%29%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20xy%20%2B%20%5Cdfrac%7B47%7D%7B3%7Dx%20%2B%20%5Cdfrac%7B47%7D%7B4%7Dy%20-%20%5Cdfrac%7Bx%5E%7B2%7D%7D%7B3%7D%20-%20%5Cdfrac%7Bxy%7D%7B4%7D%20-%20%5Cdfrac%7Bxy%7D%7B3%7D%20-%20%5Cdfrac%7By%5E%7B2%7D%7D%7B4%7D%20%3D)
![= -\dfrac{1}{12} xy + \dfrac{47}{3}x - \dfrac{x^{2}}{3} + \dfrac{47}{4}y - \dfrac{y^{2}}{4} = -\dfrac{1}{12} xy + \dfrac{47}{3}x - \dfrac{x^{2}}{3} + \dfrac{47}{4}y - \dfrac{y^{2}}{4}](https://tex.z-dn.net/?f=%3D%20-%5Cdfrac%7B1%7D%7B12%7D%20xy%20%2B%20%5Cdfrac%7B47%7D%7B3%7Dx%20-%20%5Cdfrac%7Bx%5E%7B2%7D%7D%7B3%7D%20%2B%20%5Cdfrac%7B47%7D%7B4%7Dy%20-%20%5Cdfrac%7By%5E%7B2%7D%7D%7B4%7D)
1) Необходимые условия экстремума:
![z'_{x} = \dfrac{\partial z}{\partial x} = -\dfrac{1}{12}y + \dfrac{47}{3} - \dfrac{2}{3}x z'_{x} = \dfrac{\partial z}{\partial x} = -\dfrac{1}{12}y + \dfrac{47}{3} - \dfrac{2}{3}x](https://tex.z-dn.net/?f=z%27_%7Bx%7D%20%3D%20%5Cdfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20x%7D%20%3D%20%20-%5Cdfrac%7B1%7D%7B12%7Dy%20%2B%20%5Cdfrac%7B47%7D%7B3%7D%20-%20%5Cdfrac%7B2%7D%7B3%7Dx)
![z'_{y} = \dfrac{\partial z}{\partial x} = -\dfrac{1}{12}x + \dfrac{47}{4} - \dfrac{1}{2}y z'_{y} = \dfrac{\partial z}{\partial x} = -\dfrac{1}{12}x + \dfrac{47}{4} - \dfrac{1}{2}y](https://tex.z-dn.net/?f=z%27_%7By%7D%20%3D%20%5Cdfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20x%7D%20%3D%20%20-%5Cdfrac%7B1%7D%7B12%7Dx%20%2B%20%5Cdfrac%7B47%7D%7B4%7D%20-%20%5Cdfrac%7B1%7D%7B2%7Dy)
![\displaystyle \left \{ {{ -\dfrac{1}{12}y + \dfrac{47}{3} - \dfrac{2}{3}x = 0} \atop { -\dfrac{1}{12}x + \dfrac{47}{4} - \dfrac{1}{2}y = 0}} \right. \displaystyle \left \{ {{ -\dfrac{1}{12}y + \dfrac{47}{3} - \dfrac{2}{3}x = 0} \atop { -\dfrac{1}{12}x + \dfrac{47}{4} - \dfrac{1}{2}y = 0}} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%7B%7B%20-%5Cdfrac%7B1%7D%7B12%7Dy%20%2B%20%5Cdfrac%7B47%7D%7B3%7D%20-%20%5Cdfrac%7B2%7D%7B3%7Dx%20%3D%200%7D%20%5Catop%20%7B%20-%5Cdfrac%7B1%7D%7B12%7Dx%20%2B%20%5Cdfrac%7B47%7D%7B4%7D%20-%20%5Cdfrac%7B1%7D%7B2%7Dy%20%3D%200%7D%7D%20%5Cright.)
![\displaystyle \left \{ {{\dfrac{2}{3}x + \dfrac{1}{12}y = \dfrac{47}{3} \ \ \ | \cdot 12} \atop { \dfrac{1}{12}x + \dfrac{1}{2}y = \dfrac{47}{4} \ \ \ |\cdot 12}} \right. \displaystyle \left \{ {{\dfrac{2}{3}x + \dfrac{1}{12}y = \dfrac{47}{3} \ \ \ | \cdot 12} \atop { \dfrac{1}{12}x + \dfrac{1}{2}y = \dfrac{47}{4} \ \ \ |\cdot 12}} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%7B%7B%5Cdfrac%7B2%7D%7B3%7Dx%20%20%2B%20%5Cdfrac%7B1%7D%7B12%7Dy%20%3D%20%5Cdfrac%7B47%7D%7B3%7D%20%5C%20%5C%20%5C%20%7C%20%5Ccdot%2012%7D%20%5Catop%20%7B%20%5Cdfrac%7B1%7D%7B12%7Dx%20%2B%20%5Cdfrac%7B1%7D%7B2%7Dy%20%3D%20%5Cdfrac%7B47%7D%7B4%7D%20%5C%20%5C%20%5C%20%7C%5Ccdot%2012%7D%7D%20%5Cright.)
![\displaystyle \left \{ {{8x + y = 188} \atop {x + 6y = 141}} \right. \displaystyle \left \{ {{8x + y = 188} \atop {x + 6y = 141}} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%7B%7B8x%20%2B%20y%20%3D%20188%7D%20%5Catop%20%7Bx%20%2B%206y%20%3D%20141%7D%7D%20%5Cright.)
![\displaystyle \left \{ {{y = 188 - 8x \ \ \ \ \ \ \ \ \ \ \ \ } \atop {x + 6(188 - 8x) = 141}} \right. \displaystyle \left \{ {{y = 188 - 8x \ \ \ \ \ \ \ \ \ \ \ \ } \atop {x + 6(188 - 8x) = 141}} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%7B%7By%20%3D%20188%20-%208x%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%7D%20%5Catop%20%7Bx%20%2B%206%28188%20-%208x%29%20%3D%20141%7D%7D%20%5Cright.)
![\displaystyle \left \{ {{y=20} \atop {x=21}} \right. \displaystyle \left \{ {{y=20} \atop {x=21}} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%7B%7By%3D20%7D%20%5Catop%20%7Bx%3D21%7D%7D%20%5Cright.)
Таким образом,
— стационарная точка.
2) Достаточные условия экстремума:
![A = z''_{xx} \bigg|_{M}= -\dfrac{2}{3}; \ \ \ B = z''_{xy} \bigg|_{M} = -\dfrac{1}{12}; \ \ \ C = z''_{yy} \bigg|_{M} = -\dfrac{1}{2} A = z''_{xx} \bigg|_{M}= -\dfrac{2}{3}; \ \ \ B = z''_{xy} \bigg|_{M} = -\dfrac{1}{12}; \ \ \ C = z''_{yy} \bigg|_{M} = -\dfrac{1}{2}](https://tex.z-dn.net/?f=A%20%3D%20z%27%27_%7Bxx%7D%20%5Cbigg%7C_%7BM%7D%3D%20-%5Cdfrac%7B2%7D%7B3%7D%3B%20%5C%20%5C%20%5C%20B%20%3D%20z%27%27_%7Bxy%7D%20%5Cbigg%7C_%7BM%7D%20%3D%20-%5Cdfrac%7B1%7D%7B12%7D%3B%20%5C%20%5C%20%5C%20C%20%3D%20z%27%27_%7Byy%7D%20%5Cbigg%7C_%7BM%7D%20%3D%20-%5Cdfrac%7B1%7D%7B2%7D)
Составим матрицу ![H = \left(\begin{array}{ccc}A&B\\B&C\\\end{array}\right) =\left(\begin{array}{ccc}-\dfrac{2}{3} & -\dfrac{1}{12} \\ \\-\dfrac{1}{12}& -\dfrac{1}{2} \\\end{array}\right) H = \left(\begin{array}{ccc}A&B\\B&C\\\end{array}\right) =\left(\begin{array}{ccc}-\dfrac{2}{3} & -\dfrac{1}{12} \\ \\-\dfrac{1}{12}& -\dfrac{1}{2} \\\end{array}\right)](https://tex.z-dn.net/?f=H%20%3D%20%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7DA%26B%5C%5CB%26C%5C%5C%5Cend%7Barray%7D%5Cright%29%20%3D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D-%5Cdfrac%7B2%7D%7B3%7D%20%26%20-%5Cdfrac%7B1%7D%7B12%7D%20%5C%5C%20%20%5C%5C-%5Cdfrac%7B1%7D%7B12%7D%26%20-%5Cdfrac%7B1%7D%7B2%7D%20%5C%5C%5Cend%7Barray%7D%5Cright%29)
Тогда
и
0" alt="\Delta_{2} = AC - B^{2} = -\dfrac{2}{3} \cdot \left(-\dfrac{1}{2} \right) - \left(-\dfrac{1}{12} \right)^{2} = \dfrac{47}{144} > 0" align="absmiddle" class="latex-formula">
По критерию Сильвестра точка
является точкой локального максимума.
![z = z_{\max} (21; \ 20) = \dfrac{1}{2} \cdot 21 \cdot 20 + (47 - 21 - 20)\left(\dfrac{21}{3} + \dfrac{20}{4} \right) = 282 z = z_{\max} (21; \ 20) = \dfrac{1}{2} \cdot 21 \cdot 20 + (47 - 21 - 20)\left(\dfrac{21}{3} + \dfrac{20}{4} \right) = 282](https://tex.z-dn.net/?f=z%20%3D%20z_%7B%5Cmax%7D%20%2821%3B%20%5C%2020%29%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ccdot%2021%20%5Ccdot%2020%20%2B%20%2847%20-%2021%20-%2020%29%5Cleft%28%5Cdfrac%7B21%7D%7B3%7D%20%2B%20%5Cdfrac%7B20%7D%7B4%7D%20%5Cright%29%20%20%3D%20282)
Ответ: ![z = z_{\max} (21; \ 20) = 282 z = z_{\max} (21; \ 20) = 282](https://tex.z-dn.net/?f=z%20%3D%20z_%7B%5Cmax%7D%20%2821%3B%20%5C%2020%29%20%3D%20282)