Ответ: V=48√3см³
Объяснение: в основании правильной четырёхугольной пирамиды лежит квадрат поэтому все стороны основания равны. Обозначим вершины пирамиды АВСД с высотой КО и проведём две диагонали АС и ВД, которые делят основание на 4 равных равнобедренных прямоугольных треугольника в которых половины диагоналей являются катетами а сторона основания гипотенузой. Рассмотрим полученный ∆СОД. В нём проэкция апофемы ОМ на основание также является медианой, поскольку боковая грань пирамиды равнобедренная, поэтому медиана равна половине гипотенузы СД. ОМ=12/2=6см.
Рассмотрим ∆КМО. Он прямоугольный где КО и ОМ - катеты, а КМ- гипотенуза.
КО лежит напротив угла 30°, поэтому равен половине гипотенузы КМ. Пусть КО=х, тогда КМ=2х. Составим уравнение используя теорему Пифагора:
КМ²-КО²=ОМ²
(2х)²-х²=3²
4х²-х²=9
3х²=9
х²=9/3=3
х=√3; КО=√3см, тогда КМ=2√3см
Sосн=12²=144см²
Теперь найдём объем пирамиды зная её высоту и площадь основания по формуле:
V=⅓×Sосн×KO=⅓×144×√3=48√3см³