Дано:
В правильной четырехугольной пирамиде проведено сечение через диагональ основания параллельно непересекающемуся с ней боковому ребру.
Найти:
Многоугольник, который является этим сечением - ?
Решение:
1) Обозначим правильную четырёхугольную пирамиду буквами SABCD.
SH - высота данной пирамиды.
BD - диагональ, через которое проведено данное сечение.
AS - боковое ребро, которому параллельно сечение, проходящее через диагональ основания правильной четырёхугольной пирамиды.
2) В плоскости ASC проводим HK || AS, где Н - точка пересечения диагоналей основания правильной четырёхугольной пирамиды.
3) Проведём BK и KD.
BKD - искомое сечение.
⇒ многоугольник, который является этим сечением - треугольник.
Ответ: треугольник.