Пожалуйста помогите срочно Исследовать ** сходимость ряд

+176 голосов
6.2m просмотров

Пожалуйста помогите срочно Исследовать на сходимость ряд


Математика (133 баллов) | 6.2m просмотров
Дан 1 ответ
+127 голосов

\displaystyle\\\sum\limits^\infty_{n=1}\frac{4^n}{n^4*3^n}\\\\\\ \lim_{n \to \infty} \frac{a_{n+1}}{a_n}= \lim_{n \to \infty} \frac{\bigg(\dfrac{4}{3}\bigg)^{n+1} }{(n+1)^4*3^{n+1}}\cdot\frac{n^4*3^n}{\bigg(\dfrac{4}{3}\bigg)^{n} }= \lim_{n \to \infty} \frac{4n^4}{9(n+1)^4}=\\\\\\= \lim_{n \to \infty} \frac{(4n^4)'}{(9(n+1)^4))'}= \lim_{n \to \infty} \frac{16n^3}{36(n+1)^3}= \lim_{n \to \infty} \frac{(4n^3)'}{(9(n+1)^3)'} =\\\\\\

image1" alt="\displaystyle\\=\lim_{n \to \infty} \frac{12n^2}{27n^2+54n+27} = \lim_{n \to \infty} \frac{4n^2}{9n^2+18n+9}= \lim_{n \to \infty} \frac{4}{9+\dfrac{1}{n}+\dfrac{9}{n^2} }=\\\\\\=\frac{4}{9}>1" align="absmiddle" class="latex-formula">

По признаку Даламбера ряд расходится.

(5.7k баллов)