Ответ:
a)
б)
Пошаговое объяснение:
Всего 10 шаров.
а) Для того чтобы при извлечении три раза у нас было ровно два белых шарика, мы можем рассмотреть 3 возможные ситуации.
б-белый
ч-черный
ббч - достали сначала белый, потом белые, затем черный
бчб - достали белый, затем черный, после белый
чбб - черный, белый, белый.
Т.е. у нас 3 возможные разные непересекающие события (ИЛИ 1 случай, ИЛИ 2, ИЛИ 3).
Для начала найдем вероятность того, что произойдет первый случай ббч
P(б)-Вероятность достать белый шар = 3/10
P(ч)-Вероятность достать черный шар = 7/10
ббч - означает, что мы должны достать сначала белый И потом белый,
И затем черный.
И - означает перемножение вероятностей
ббч = P(б)*P(б)*P(ч) =
Аналогично посчитаем
бчб = P(б)*P(ч)*P(б) =
чбб = P(ч)*P(б)*P(б) =
Операция сложения событий означает логическую связку ИЛИ,
Итак, у нас 3 возможных ситуаций:
ббч ИЛИ бчб ИЛИ чбб =
----------------------
б)
Что означает не меньше 2 белых шаров? Это означает вытащить либо 2 белых шара, либо 3 белых шара. Т.е. у нас 2 случая:
2 белых шара ИЛИ 3 белых шара
Вероятность того, что мы вытащим 2 белых шара мы знаем =
Посчитаем вероятность того, что мы вытащим 3 белых шара.
ббб = P(б)*P(б)*P(б) =
Т.к. рассматриваем 2 случая(ИЛИ), будем складывать: