Вычислить tg x , где x—корень уравнения 2log3 (2sinx) — 7log2(2sinx) + 3 = 0 Задание 9
Ответ:
1
Объяснение:
ОДЗ sinx > 0
Пусть log2 (2sinx) = t
2t^2 - 7t + 3 = 0
D = 49 - 24 = 25 = 5^2
t1 = 1/2
t2 = 3
log2 (2sinx) = 1/2
sinx = 1/2 * √2
x = pi/4 + 2pin
x = 3pi/4 + 2pin
log2 (2sinx) = 3
sinx = 4 ∉ [-1; 1]
tg^2 (pi/4) = 1
tg^2 (3pi/4) = 1