Решить неравенство x^2 * log(512,(x+7))

+573 голосов
707k просмотров

Решить неравенство x^2 * log(512,(x+7))<= log(2,(x^2 + 14x + 49))


Математика (168 баллов) | 707k просмотров
Дано ответов: 2
+66 голосов
Правильный ответ

Решение приложено

--------------------------------------------------------------------------------------------

(25.7k баллов)
+39 голосов

Дано неравенство x² * log(512,(x+7))<= log(2,(x² + 14x + 49)).</p>

Учтём, что 512 = 2^9 и x² + 14x + 49 = (x + 7)² .

Тогда исходное неравенство примет вид:

(x²log(2, (x + 7))/9) ≤  2log(2, (x + 7)).

Отсюда делаем вывод: логарифм нуля не существует, х ≠ -7.

Далее, логарифм 1 при любом основании равен 0.

Значит, это один из корней неравенства.

Если логарифм не равен 0, то тна него можно сократить

Получим х² = 18, х = ±√18 = ±3√2.

Ответ: -7 < x ≤ -6, -3√2 ≤ x ≤ 3√2.

(309k баллов)