Решить систему: x+y^2=z^3; x^2+y^3=z^4; x^3+y^4=z^5 и хотя бы немного пояснить

+343 голосов
2.7m просмотров

Решить систему: x+y^2=z^3; x^2+y^3=z^4; x^3+y^4=z^5 и хотя бы немного пояснить


Алгебра (744 баллов) | 2.7m просмотров
Дан 1 ответ
+136 голосов

Ответ:

(0;0;0) , (0;1;1) , (1;0;1) , (-1; 0; -1)  , (-1;-1;0) , ( (1+√5)/2; (1+√5)/2; (1+√5)/2 ) ,

( (1-√5)/2; (1-√5)/2; (1-√5)/2 )

Объяснение:

x+y^2=z^3

x^2+y^3=z^4

x^3+y^4 =z^5

Заметим, что :

(x+y^2)*(x^3+y^4) = (x^2+y^3)^2

x^4 +x*y^4 +y^2*x^3 +y^6 = x^4 +2*x^2*y^3 +y^6

x*y^4 +y^2*x^3 - 2*x^2*y^3 = 0

x*y^2 *(y^2 -2*x*y +x^2) = 0

x*y^2*(y-x)^2 = 0

1) x=0

y^2=z^3

y^3=z^4

Рассмотрим сначала нулевое решение y=z=0 , теперь можно поделить второе уравнение на первое, предполагая , что z≠0 и y≠0 :

y=z → z^2=z^3 → z^2*(1-z)=0 →  z=y=1

2) y = 0

x=z^3

x^2=z^4

Рассмотрим сначала нулевое решение x=z=0 , теперь можно поделить второе уравнение на первое, предполагая , что z≠0 и x≠0

z=x → z=z^3 →  z(1-z^2) =0 →  z*(1-z)*(1+z) = 0 →   z=x=1; z=x=-1

3) x=y

x+x^2 =z^3

x^2+x^3 =z^4

Проверим случай, когда :

x+x^2 = 0

x*(x+1) = 0 → x=y=z=0 ;  x=y=-1 ; z=0

Теперь можно не боясь за потерю решений  поделить второе уравнение на первое :

x=z  

x+x^2 = x^3  

x*(x^2-x-1) = 0

x=y=z=0

А вот одно весьма неожиданное и интересное решение .

x^2-x-1=0

D= 1+4=5

x= (1+-√5)/2

x=y=z = (1+-√5)/2

Таким образом можно записать ответ : (x,y,z)

(0;0;0) , (0;1;1) , (1;0;1) , (-1; 0; -1)  , (-1;-1;0) , ( (1+√5)/2; (1+√5)/2; (1+√5)/2 ) ,

( (1-√5)/2; (1-√5)/2; (1-√5)/2 )

(11.7k баллов)