Ответ:
Искомое расстояние равно 2,4 ед.
Объяснение:
Расстояние от точки О до плоскости DCB - это перпендикуляр ОН, опущенный из этой точки на плоскость.
Проведем перпендикуляр ОР из точки О к прямой ВС.
По теореме о трех перпендикулярах DР перпендикулярна ВС.
Тогда в прямоугольном треугольнике OРD (DO перпендикулярна плоскости основания конуса - дано) высота ОН из прямого угла и есть искомое расстояние.
Рассмотрим треугольник АВС. Это прямоугольный треугольник (угол В опирается на диаметр => равен 90°). ОР - средняя линия этого треугольника (точка О - середина гипотенузы АС - центр основания конуса, ОР параллельна АВ). =>
OH = AB/2 = 4 ед. РС = ВС/2 =5 ед.
В прямоугольном треугольнике DРС по Пифагору
DP = √(DC²+PС²) = √25 = 5 ед.
В прямоугольном треугольнике ОDР по Пифагору
DО = √(DР²-PО²) = √9 = 3 ед.
Тогда ОН = OP*OD/DP = 4*3/5 = 2,4 ед.