Здравствуйте уважаемые, помогите, пожалуйста, решить поставленную задачу: Выбрасываются 6...

+387 голосов
4.6m просмотров

Здравствуйте уважаемые, помогите, пожалуйста, решить поставленную задачу: Выбрасываются 6 кубиков ( числа от 1 до 6 ), человек угадывает число любое из выпавших 6-ти кубиков. Если он угадал хотя бы одно число, то количество кубиков уменьшается на 1. Задача: посчитать процент вероятности, что он угадает все числа до раунда, где останется 1 кубик, ни разу не ошибившись.


Математика (13 баллов) | 4.6m просмотров
Дан 1 ответ
+148 голосов
Правильный ответ

Рассмотрим немного другую задачу. Выбрасываются k (k>0) кубиков, человек загадывает число от 1 до 6. Найти вероятность того, что число присутствует хотя бы на одном из кубиков

Событие А="число присутствует хотя бы на одном из кубиков" противоположно событию В="число не присутствует ни на одном из кубиков". Тогда p(A)=1-p(B)

Вероятность не угадать число на одном кубике равна \dfrac{5}{6} (среди 6 чисел 5 не подойдут). Тогда вероятность не угадать число на k кубиках равна  imagep(A)=1-(\dfrac{5}{6})^k" alt="p(B)=(\dfrac{5}{6})^k=>p(A)=1-(\dfrac{5}{6})^k" align="absmiddle" class="latex-formula"> - это и есть искомая вероятность в данной задаче.

Вернемся к исходной задаче. На 1ом этапе вероятность угадать число равна (1-(\dfrac{5}{6})^6) . При условии угадывания числа, на следующем этапе остается 6-1=5 кубиков. Тогда вероятность угадывания на 2ом этапе равна (1-(\dfrac{5}{6})^5) . При условии угадывания числа, на следующем этапе остается 5-1=4 кубиков. И т.д. На последнем этапе останется 2 кубика, и вероятность угадывания будет равна (1-(\dfrac{5}{6})^2)

Тогда искомая вероятность (1-(\dfrac{5}{6})^6)(1-(\dfrac{5}{6})^5)(1-(\dfrac{5}{6})^4)(1-(\dfrac{5}{6})^3)(1-(\dfrac{5}{6})^2)\approx 0.027

(11.0k баллов)
+158

Большое Спасибо!!!