1. Пусть , . Заметим, что и монотонно убывают, значит, функция монотонная, следовательно, имеет не более одного корня. Из этого следует, что у уравнения не более двух корней.
2. Заметим, что если является решением, то тоже. Очевидно, что является осью симметрии (причем единственной) графика . Иначе говоря, пара исчерпывает все решения указанного уравнения, если таковые имеются. Значит, достаточно потребовать, чтобы . Итак, пробегает область значения рассматриваемой функции, кроме того , которому соответствует (это ).
3. Функция непрерывна, поэтому достаточно посмотреть на наименьшее и наибольшее значения. Наименьшее значение достигается в 0 (то есть значение , а наибольшее в . Получаем ответ: