Ответ:
7
Пошаговое объяснение:
Первое число, удовлетворяющее условиям, равно 12. Чтобы число делилось на 3, сумма его цифр должна делиться на 3. Последняя цифра постоянна — это 2, значит, сумма остальных цифр должна при делении на 3 давать остаток 1, что уже верно для числа 12. Значит, все подходящие числа можно описать следующей формулой (утверждение 1):
. Увеличение числа на 30 не изменяет последнюю цифру, при этом каждый раз сумма цифр без последней изменяется на 3 — наименьшее натуральное число, которое не меняет остаток от деления на 3.
Сумма данных чисел оканчивается на 4, если количество чисел при делении на 5 даёт остаток 2 (утверждение 2). Действительно, сумма пяти двоек оканчивается на 0 (меньшим количеством двоек получить 0 невозможно), да ещё две двойки дают на конце 4.
Слагаемых тем больше, чем меньше каждое из чисел. Если записать числа по порядку, то первое число не меньше 12, второе — не меньше 42 и т. д., то есть максимально возможное количество слагаемых достигается, если последовательность задана формулой из утверждения 1. Тогда их сумма — это сумма арифметической прогрессии:
![S_{\min}=\dfrac{2\cdot 12+30(n-1)}{2}\cdot n=15n^2-3n\leq 1164\Leftrightarrow 5n^2-n-388\leq 0\\\dfrac{1-\sqrt{7761}}{10}\leq n\leq \dfrac{1+\sqrt{7761}}{10} S_{\min}=\dfrac{2\cdot 12+30(n-1)}{2}\cdot n=15n^2-3n\leq 1164\Leftrightarrow 5n^2-n-388\leq 0\\\dfrac{1-\sqrt{7761}}{10}\leq n\leq \dfrac{1+\sqrt{7761}}{10}](https://tex.z-dn.net/?f=S_%7B%5Cmin%7D%3D%5Cdfrac%7B2%5Ccdot%2012%2B30%28n-1%29%7D%7B2%7D%5Ccdot%20n%3D15n%5E2-3n%5Cleq%201164%5CLeftrightarrow%205n%5E2-n-388%5Cleq%200%5C%5C%5Cdfrac%7B1-%5Csqrt%7B7761%7D%7D%7B10%7D%5Cleq%20n%5Cleq%20%5Cdfrac%7B1%2B%5Csqrt%7B7761%7D%7D%7B10%7D%3C%5Cdfrac%7B1%2B%5Csqrt%7B7921%7D%7D%7B10%7D%3D9)
C учётом натуральности n ≤ 8. По утверждению 2 n = 2 или n = 7.
Пусть n = 7. Пусть записаны числа 42, 72, 102, 132, 162, 192, 462. Каждое из них делится на 3, их сумма равна 1164.