Ответ:41
Пошаговое объяснение:
рассматриваются числа вида ааbb, abab, baab, где b = [1; 3; 5; 7; 9], a = [1;2;3;4;5;6;7;8;9;0] , а!=b.
и (a + b)= [3; 6; 9; 12; 15] т.к. кратны 3, а максимальная сумма при таких условиях равна 15. По очереди берём каждый элемент из b и вычитаем его из (a+b), тем самым получаем a.
b - a
1 - 2
1 - 5
1 - 8
3 -0 (0033 и 0303 не подходят)
3 - 6
3 - 9
5-1
5 - 4
5 - 7
7 - 2
7 - 5
7 - 8
9-0(0099, 0909 - не подходят)
9 - 3
9 - 6
Получили 15 различных пар. 15*3 - 4 = 45 - 4 = 41 (различных числа).