![16x^4+8x^3+1=8x+16x^2\\ \\ 8x^3\cdot\Big(2x+1\Big)+1=8x\cdot \Big(2x+1\Big) 16x^4+8x^3+1=8x+16x^2\\ \\ 8x^3\cdot\Big(2x+1\Big)+1=8x\cdot \Big(2x+1\Big)](https://tex.z-dn.net/?f=16x%5E4%2B8x%5E3%2B1%3D8x%2B16x%5E2%5C%5C%20%5C%5C%208x%5E3%5Ccdot%5CBig%282x%2B1%5CBig%29%2B1%3D8x%5Ccdot%20%5CBig%282x%2B1%5CBig%29)
Пусть
. тогда
, мы получаем
![(t-1)^3t+1=4(t-1)t (t-1)^3t+1=4(t-1)t](https://tex.z-dn.net/?f=%28t-1%29%5E3t%2B1%3D4%28t-1%29t)
![t\Big(t^3-3t^2+3t-1\Big)+1-4t\Big(t-1\Big)=0 t\Big(t^3-3t^2+3t-1\Big)+1-4t\Big(t-1\Big)=0](https://tex.z-dn.net/?f=t%5CBig%28t%5E3-3t%5E2%2B3t-1%5CBig%29%2B1-4t%5CBig%28t-1%5CBig%29%3D0)
![t^4-3t^3+3t^2-t+1-4t^2+4t=0\\ \\ t^4-3t^3-t^2+3t+1=0 t^4-3t^3+3t^2-t+1-4t^2+4t=0\\ \\ t^4-3t^3-t^2+3t+1=0](https://tex.z-dn.net/?f=t%5E4-3t%5E3%2B3t%5E2-t%2B1-4t%5E2%2B4t%3D0%5C%5C%20%5C%5C%20t%5E4-3t%5E3-t%5E2%2B3t%2B1%3D0)
Поскольку
не является корнем этого уравнения, то разделим обе части уравнения на
, мы получаем
![\left(t^2+\dfrac{1}{t^2}\right)-3\cdot \left(t-\dfrac{1}{t}\right)-1=0 \left(t^2+\dfrac{1}{t^2}\right)-3\cdot \left(t-\dfrac{1}{t}\right)-1=0](https://tex.z-dn.net/?f=%5Cleft%28t%5E2%2B%5Cdfrac%7B1%7D%7Bt%5E2%7D%5Cright%29-3%5Ccdot%20%5Cleft%28t-%5Cdfrac%7B1%7D%7Bt%7D%5Cright%29-1%3D0)
Замена
, получаем такое квадратное уравнение
![z^2+2-3z-1=0\\ \\ z^2-3z+1=0\\ \\ D=(-3)^2-4\cdot 1\cdot 1=5\\ \\ z_{1,2}=\dfrac{3\pm\sqrt{5}}{2} z^2+2-3z-1=0\\ \\ z^2-3z+1=0\\ \\ D=(-3)^2-4\cdot 1\cdot 1=5\\ \\ z_{1,2}=\dfrac{3\pm\sqrt{5}}{2}](https://tex.z-dn.net/?f=z%5E2%2B2-3z-1%3D0%5C%5C%20%5C%5C%20z%5E2-3z%2B1%3D0%5C%5C%20%5C%5C%20D%3D%28-3%29%5E2-4%5Ccdot%201%5Ccdot%201%3D5%5C%5C%20%5C%5C%20z_%7B1%2C2%7D%3D%5Cdfrac%7B3%5Cpm%5Csqrt%7B5%7D%7D%7B2%7D)
Далее вернёмся к обратной замене
![t-\dfrac{1}{t}=\dfrac{3\pm\sqrt{5}}{2} t-\dfrac{1}{t}=\dfrac{3\pm\sqrt{5}}{2}](https://tex.z-dn.net/?f=t-%5Cdfrac%7B1%7D%7Bt%7D%3D%5Cdfrac%7B3%5Cpm%5Csqrt%7B5%7D%7D%7B2%7D)
![2t^2-(3\pm\sqrt{5})t-2=0 2t^2-(3\pm\sqrt{5})t-2=0](https://tex.z-dn.net/?f=2t%5E2-%283%5Cpm%5Csqrt%7B5%7D%29t-2%3D0)
Решив как квадратное уравнение вы получите такие корни:
![t_{1,2}=\dfrac{3-\sqrt{5}\pm\sqrt{30-6\sqrt{5}}}{4};~~~~ t_{3,4}=\dfrac{3+\sqrt{5}\pm\sqrt{30+6\sqrt{5}}}{4} t_{1,2}=\dfrac{3-\sqrt{5}\pm\sqrt{30-6\sqrt{5}}}{4};~~~~ t_{3,4}=\dfrac{3+\sqrt{5}\pm\sqrt{30+6\sqrt{5}}}{4}](https://tex.z-dn.net/?f=t_%7B1%2C2%7D%3D%5Cdfrac%7B3-%5Csqrt%7B5%7D%5Cpm%5Csqrt%7B30-6%5Csqrt%7B5%7D%7D%7D%7B4%7D%3B~~~~%20t_%7B3%2C4%7D%3D%5Cdfrac%7B3%2B%5Csqrt%7B5%7D%5Cpm%5Csqrt%7B30%2B6%5Csqrt%7B5%7D%7D%7D%7B4%7D)
Выполним снова обратную замену и найдём корни исходного уравнения:
![x_{1,2}=\dfrac{t_{1,2}}{2}-\dfrac{1}{2}=\dfrac{3-\sqrt{5}\pm\sqrt{30-6\sqrt{5}}}{8}-\dfrac{1}{2}=\boxed{\dfrac{-1-\sqrt{5}\pm\sqrt{30-6\sqrt{5}}}{8}} x_{1,2}=\dfrac{t_{1,2}}{2}-\dfrac{1}{2}=\dfrac{3-\sqrt{5}\pm\sqrt{30-6\sqrt{5}}}{8}-\dfrac{1}{2}=\boxed{\dfrac{-1-\sqrt{5}\pm\sqrt{30-6\sqrt{5}}}{8}}](https://tex.z-dn.net/?f=x_%7B1%2C2%7D%3D%5Cdfrac%7Bt_%7B1%2C2%7D%7D%7B2%7D-%5Cdfrac%7B1%7D%7B2%7D%3D%5Cdfrac%7B3-%5Csqrt%7B5%7D%5Cpm%5Csqrt%7B30-6%5Csqrt%7B5%7D%7D%7D%7B8%7D-%5Cdfrac%7B1%7D%7B2%7D%3D%5Cboxed%7B%5Cdfrac%7B-1-%5Csqrt%7B5%7D%5Cpm%5Csqrt%7B30-6%5Csqrt%7B5%7D%7D%7D%7B8%7D%7D)
![x_{3,4}=\dfrac{t_{3,4}}{2}-\dfrac{1}{2}=\dfrac{3+\sqrt{5}\pm\sqrt{30+6\sqrt{5}}}{8}-\dfrac{1}{2}=\boxed{\dfrac{\sqrt{5}-1\pm\sqrt{30+6\sqrt{5}}}{8}} x_{3,4}=\dfrac{t_{3,4}}{2}-\dfrac{1}{2}=\dfrac{3+\sqrt{5}\pm\sqrt{30+6\sqrt{5}}}{8}-\dfrac{1}{2}=\boxed{\dfrac{\sqrt{5}-1\pm\sqrt{30+6\sqrt{5}}}{8}}](https://tex.z-dn.net/?f=x_%7B3%2C4%7D%3D%5Cdfrac%7Bt_%7B3%2C4%7D%7D%7B2%7D-%5Cdfrac%7B1%7D%7B2%7D%3D%5Cdfrac%7B3%2B%5Csqrt%7B5%7D%5Cpm%5Csqrt%7B30%2B6%5Csqrt%7B5%7D%7D%7D%7B8%7D-%5Cdfrac%7B1%7D%7B2%7D%3D%5Cboxed%7B%5Cdfrac%7B%5Csqrt%7B5%7D-1%5Cpm%5Csqrt%7B30%2B6%5Csqrt%7B5%7D%7D%7D%7B8%7D%7D)