Ответ:
![-\frac{3\pi}{4} -\frac{3\pi}{4}](https://tex.z-dn.net/?f=-%5Cfrac%7B3%5Cpi%7D%7B4%7D)
Пошаговое объяснение:
![\sin^2{x}+3=7\sin{x}\cos{x} \\\\\sin^2{x}+3\cdot{1}-7\sin{x}\cos{x}=0\\ \\\sin^2{x}+3\cdot(\sin^2{x}+\cos^2{x})-7\sin{x}\cos{x}=0\\ \\\sin^2{x}+3\sin^2{x}+3\cos^2{x}-7\sin{x}\cos{x}=0\\ \\ 4\sin^2{x}-7\sin{x}\cos{x}+3\cos^2{x}=0 \sin^2{x}+3=7\sin{x}\cos{x} \\\\\sin^2{x}+3\cdot{1}-7\sin{x}\cos{x}=0\\ \\\sin^2{x}+3\cdot(\sin^2{x}+\cos^2{x})-7\sin{x}\cos{x}=0\\ \\\sin^2{x}+3\sin^2{x}+3\cos^2{x}-7\sin{x}\cos{x}=0\\ \\ 4\sin^2{x}-7\sin{x}\cos{x}+3\cos^2{x}=0](https://tex.z-dn.net/?f=%5Csin%5E2%7Bx%7D%2B3%3D7%5Csin%7Bx%7D%5Ccos%7Bx%7D%20%5C%5C%5C%5C%5Csin%5E2%7Bx%7D%2B3%5Ccdot%7B1%7D-7%5Csin%7Bx%7D%5Ccos%7Bx%7D%3D0%5C%5C%20%5C%5C%5Csin%5E2%7Bx%7D%2B3%5Ccdot%28%5Csin%5E2%7Bx%7D%2B%5Ccos%5E2%7Bx%7D%29-7%5Csin%7Bx%7D%5Ccos%7Bx%7D%3D0%5C%5C%20%5C%5C%5Csin%5E2%7Bx%7D%2B3%5Csin%5E2%7Bx%7D%2B3%5Ccos%5E2%7Bx%7D-7%5Csin%7Bx%7D%5Ccos%7Bx%7D%3D0%5C%5C%20%5C%5C%204%5Csin%5E2%7Bx%7D-7%5Csin%7Bx%7D%5Ccos%7Bx%7D%2B3%5Ccos%5E2%7Bx%7D%3D0)
Разделим обе части уравнения на
:
0\\\\t_{1,2}=\frac{-(-7)\pm \sqrt{1}}{2\cdot 4} =\frac{7\pm 1}{8} \\\\t_{1}=\frac{3}{4},~~~t_{2}=1" alt="4\cdot\frac{ \sin^2{x}}{\cos^2{x}} -7\cdot \frac{\sin{x}\cos{x}}{\cos^2{x}} +3\cdot \frac{\cos^2{x}}{\cos^2{x}} =\frac{0}{\cos^2{x}} \\\\4tg^2{x}-7tg{x}+3=0 \\\\tg{x}=t,~t \in R \\\\4t^2-7t+3=0\\ \\D=(-7)^2-4\cdot 4\cdot 3=49-48=1>0\\\\t_{1,2}=\frac{-(-7)\pm \sqrt{1}}{2\cdot 4} =\frac{7\pm 1}{8} \\\\t_{1}=\frac{3}{4},~~~t_{2}=1" align="absmiddle" class="latex-formula">
или ![tg{x}=1 tg{x}=1](https://tex.z-dn.net/?f=tg%7Bx%7D%3D1)
или ![x=arctg{1}+\pi k, ~k \in Z x=arctg{1}+\pi k, ~k \in Z](https://tex.z-dn.net/?f=x%3Darctg%7B1%7D%2B%5Cpi%20k%2C%20~k%20%5Cin%20Z)
или ![x=\frac{\pi}{4}+\pi k, ~k \in Z x=\frac{\pi}{4}+\pi k, ~k \in Z](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%2B%5Cpi%20k%2C%20~k%20%5Cin%20Z)
корни серии решений
: ![...,~arctg \frac{3}{4}-2\pi, ~arctg \frac{3}{4}-\pi, ~arctg \frac{3}{4}, ~arctg \frac{3}{4}+\pi, ~arctg \frac{3}{4}+2\pi, ~... ...,~arctg \frac{3}{4}-2\pi, ~arctg \frac{3}{4}-\pi, ~arctg \frac{3}{4}, ~arctg \frac{3}{4}+\pi, ~arctg \frac{3}{4}+2\pi, ~...](https://tex.z-dn.net/?f=...%2C~arctg%20%5Cfrac%7B3%7D%7B4%7D-2%5Cpi%2C%20~arctg%20%5Cfrac%7B3%7D%7B4%7D-%5Cpi%2C%20~arctg%20%5Cfrac%7B3%7D%7B4%7D%2C%20~arctg%20%5Cfrac%7B3%7D%7B4%7D%2B%5Cpi%2C%20~arctg%20%5Cfrac%7B3%7D%7B4%7D%2B2%5Cpi%2C%20~...)
корни серии решений
: ![...,~-\frac{7\pi}{4}, ~-\frac{3\pi}{4}, ~\frac{\pi}{4}, ~\frac{5\pi}{4}, ~\frac{9\pi}{4}, ~... ...,~-\frac{7\pi}{4}, ~-\frac{3\pi}{4}, ~\frac{\pi}{4}, ~\frac{5\pi}{4}, ~\frac{9\pi}{4}, ~...](https://tex.z-dn.net/?f=...%2C~-%5Cfrac%7B7%5Cpi%7D%7B4%7D%2C%20~-%5Cfrac%7B3%5Cpi%7D%7B4%7D%2C%20~%5Cfrac%7B%5Cpi%7D%7B4%7D%2C%20~%5Cfrac%7B5%5Cpi%7D%7B4%7D%2C%20~%5Cfrac%7B9%5Cpi%7D%7B4%7D%2C%20~...)
Необходимо выбрать, что больше:
или ![arctg \frac{3}{4}-\pi arctg \frac{3}{4}-\pi](https://tex.z-dn.net/?f=arctg%20%5Cfrac%7B3%7D%7B4%7D-%5Cpi)
Функция
возрастающая, поэтому , так
\frac{3}{4}" alt="1>\frac{3}{4}" align="absmiddle" class="latex-formula">, то
arctg \frac{3}{4}" alt="arctg1>arctg \frac{3}{4}" align="absmiddle" class="latex-formula">, значит,
arctg\frac{3}{4} -\pi" alt="-\frac{3\pi}{4}=arctg1-\pi> arctg\frac{3}{4} -\pi" align="absmiddle" class="latex-formula">
значит,
-наибольший отрицательный корень уравнения