Ответ:
-
Это линия называется астроидой, её уравнение в параметрическом виде
таково:
.
Фигура замкнута и симметрична относительно осей координат. Поэтому будем находить площадь четвёртой части фигуры, а затем полученное значение умножим на 4 .
При изменении переменной "х" от 0 до 10:
, параметр t изменяется от П/2 до 0:
Действительно, в 1 четверти :
![x_1=0:\ 10cos^3t=0\ \ \to \ \ cost=0\ ,\ \ t_1=\dfrac{\pi}{2}\ \ ;\\\\x_2=10:\ 10cos^3t=10\ \ \to \ \ cost=1\ \ ,\ \ t_2=0\ . x_1=0:\ 10cos^3t=0\ \ \to \ \ cost=0\ ,\ \ t_1=\dfrac{\pi}{2}\ \ ;\\\\x_2=10:\ 10cos^3t=10\ \ \to \ \ cost=1\ \ ,\ \ t_2=0\ .](https://tex.z-dn.net/?f=x_1%3D0%3A%5C%2010cos%5E3t%3D0%5C%20%5C%20%5Cto%20%5C%20%5C%20cost%3D0%5C%20%2C%5C%20%5C%20t_1%3D%5Cdfrac%7B%5Cpi%7D%7B2%7D%5C%20%5C%20%3B%5C%5C%5C%5Cx_2%3D10%3A%5C%2010cos%5E3t%3D10%5C%20%5C%20%5Cto%20%5C%20%5C%20cost%3D1%5C%20%5C%20%2C%5C%20%5C%20t_2%3D0%5C%20.)
![\dfrac{1}{4}\cdot S=\int\limits^{t_2}_{t_1}\, y(t)\cdot x'(t)\, dt=\int\limits_{\pi /2}^0\, \Big(10sin^3t\cdot (-30cos^2t\cdot sint\Big)\, dt=\\\\\\=-\int\limits^{\pi /2}_0\, \Big(-300\, sin^4t\cdot cos^2t\Big)\, dt=300\int\limits^{\pi /2}_0\, sin^2t\cdot sin^2t\cdot cos^2t\cdot dt=\\\\\\=300\int\limits^{\pi /2}_0\, \dfrac{1-cos2t}{2}\cdot \Big(\dfrac{1}{2}sin2t\Big)^2\, dt=300\int\limits^{\pi /2}_0\, \dfrac{1}{2\cdot 4}\, (1-cos2t)\cdot sin^22t\, dt= \dfrac{1}{4}\cdot S=\int\limits^{t_2}_{t_1}\, y(t)\cdot x'(t)\, dt=\int\limits_{\pi /2}^0\, \Big(10sin^3t\cdot (-30cos^2t\cdot sint\Big)\, dt=\\\\\\=-\int\limits^{\pi /2}_0\, \Big(-300\, sin^4t\cdot cos^2t\Big)\, dt=300\int\limits^{\pi /2}_0\, sin^2t\cdot sin^2t\cdot cos^2t\cdot dt=\\\\\\=300\int\limits^{\pi /2}_0\, \dfrac{1-cos2t}{2}\cdot \Big(\dfrac{1}{2}sin2t\Big)^2\, dt=300\int\limits^{\pi /2}_0\, \dfrac{1}{2\cdot 4}\, (1-cos2t)\cdot sin^22t\, dt=](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B4%7D%5Ccdot%20S%3D%5Cint%5Climits%5E%7Bt_2%7D_%7Bt_1%7D%5C%2C%20y%28t%29%5Ccdot%20x%27%28t%29%5C%2C%20dt%3D%5Cint%5Climits_%7B%5Cpi%20%2F2%7D%5E0%5C%2C%20%5CBig%2810sin%5E3t%5Ccdot%20%28-30cos%5E2t%5Ccdot%20sint%5CBig%29%5C%2C%20dt%3D%5C%5C%5C%5C%5C%5C%3D-%5Cint%5Climits%5E%7B%5Cpi%20%2F2%7D_0%5C%2C%20%5CBig%28-300%5C%2C%20sin%5E4t%5Ccdot%20cos%5E2t%5CBig%29%5C%2C%20dt%3D300%5Cint%5Climits%5E%7B%5Cpi%20%2F2%7D_0%5C%2C%20sin%5E2t%5Ccdot%20sin%5E2t%5Ccdot%20cos%5E2t%5Ccdot%20dt%3D%5C%5C%5C%5C%5C%5C%3D300%5Cint%5Climits%5E%7B%5Cpi%20%2F2%7D_0%5C%2C%20%5Cdfrac%7B1-cos2t%7D%7B2%7D%5Ccdot%20%5CBig%28%5Cdfrac%7B1%7D%7B2%7Dsin2t%5CBig%29%5E2%5C%2C%20dt%3D300%5Cint%5Climits%5E%7B%5Cpi%20%2F2%7D_0%5C%2C%20%5Cdfrac%7B1%7D%7B2%5Ccdot%204%7D%5C%2C%20%281-cos2t%29%5Ccdot%20sin%5E22t%5C%2C%20dt%3D)
![=\dfrac{300}{8}\int\limits^{\pi /2}_0\, (sin^22t-sin^22t\cdot cos2t)\, dt=\\\\\\=\dfrac{300}{8}\cdot \Big(\int\limits^{\pi /2}_0\, \dfrac{1-cos4t}{2}\, dt-\dfrac{1}{2}\int\limits^{\pi /2}_0\, sin^22t\cdot d(sin2t)\Big)=\\\\\\=\dfrac{300}{16}\cdot \Big(t-\dfrac{1}{4}sin4t\Big)\Big|_0^{\pi /2}-\dfrac{300}{16}\cdot \dfrac{sin^32t}{3}\Big|_0^{\pi /2}=\dfrac{300}{16}\cdot \dfrac{\pi}{2}=\dfrac{300\, \pi }{32}\\\\\\S=4\cdot \dfrac{300\, \pi }{32}=\dfrac{300\, \pi }{8}=\dfrac{75\, \pi }{2} =\dfrac{300}{8}\int\limits^{\pi /2}_0\, (sin^22t-sin^22t\cdot cos2t)\, dt=\\\\\\=\dfrac{300}{8}\cdot \Big(\int\limits^{\pi /2}_0\, \dfrac{1-cos4t}{2}\, dt-\dfrac{1}{2}\int\limits^{\pi /2}_0\, sin^22t\cdot d(sin2t)\Big)=\\\\\\=\dfrac{300}{16}\cdot \Big(t-\dfrac{1}{4}sin4t\Big)\Big|_0^{\pi /2}-\dfrac{300}{16}\cdot \dfrac{sin^32t}{3}\Big|_0^{\pi /2}=\dfrac{300}{16}\cdot \dfrac{\pi}{2}=\dfrac{300\, \pi }{32}\\\\\\S=4\cdot \dfrac{300\, \pi }{32}=\dfrac{300\, \pi }{8}=\dfrac{75\, \pi }{2}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B300%7D%7B8%7D%5Cint%5Climits%5E%7B%5Cpi%20%2F2%7D_0%5C%2C%20%28sin%5E22t-sin%5E22t%5Ccdot%20cos2t%29%5C%2C%20dt%3D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B300%7D%7B8%7D%5Ccdot%20%5CBig%28%5Cint%5Climits%5E%7B%5Cpi%20%2F2%7D_0%5C%2C%20%5Cdfrac%7B1-cos4t%7D%7B2%7D%5C%2C%20dt-%5Cdfrac%7B1%7D%7B2%7D%5Cint%5Climits%5E%7B%5Cpi%20%2F2%7D_0%5C%2C%20sin%5E22t%5Ccdot%20d%28sin2t%29%5CBig%29%3D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7B300%7D%7B16%7D%5Ccdot%20%5CBig%28t-%5Cdfrac%7B1%7D%7B4%7Dsin4t%5CBig%29%5CBig%7C_0%5E%7B%5Cpi%20%2F2%7D-%5Cdfrac%7B300%7D%7B16%7D%5Ccdot%20%5Cdfrac%7Bsin%5E32t%7D%7B3%7D%5CBig%7C_0%5E%7B%5Cpi%20%2F2%7D%3D%5Cdfrac%7B300%7D%7B16%7D%5Ccdot%20%5Cdfrac%7B%5Cpi%7D%7B2%7D%3D%5Cdfrac%7B300%5C%2C%20%5Cpi%20%7D%7B32%7D%5C%5C%5C%5C%5C%5CS%3D4%5Ccdot%20%5Cdfrac%7B300%5C%2C%20%5Cpi%20%7D%7B32%7D%3D%5Cdfrac%7B300%5C%2C%20%5Cpi%20%7D%7B8%7D%3D%5Cdfrac%7B75%5C%2C%20%5Cpi%20%7D%7B2%7D)