![\sin^{8}x + \cos^{8}x = \dfrac{17}{16} \cos^{2}2x \sin^{8}x + \cos^{8}x = \dfrac{17}{16} \cos^{2}2x](https://tex.z-dn.net/?f=%5Csin%5E%7B8%7Dx%20%2B%20%5Ccos%5E%7B8%7Dx%20%3D%20%5Cdfrac%7B17%7D%7B16%7D%20%5Ccos%5E%7B2%7D2x)
![(\sin^{2}x)^{4} + (\cos^{2}x)^{4} = \dfrac{17}{16} \cos^{2}2x (\sin^{2}x)^{4} + (\cos^{2}x)^{4} = \dfrac{17}{16} \cos^{2}2x](https://tex.z-dn.net/?f=%28%5Csin%5E%7B2%7Dx%29%5E%7B4%7D%20%2B%20%28%5Ccos%5E%7B2%7Dx%29%5E%7B4%7D%20%3D%20%5Cdfrac%7B17%7D%7B16%7D%20%5Ccos%5E%7B2%7D2x)
![\left(\dfrac{1 - \cos 2x}{2} \right)^{4} + \left(\dfrac{1 + \cos 2x}{2} \right)^{4} = \dfrac{17}{16} \cos^{2}2x \ \ \ | \cdot 16 \left(\dfrac{1 - \cos 2x}{2} \right)^{4} + \left(\dfrac{1 + \cos 2x}{2} \right)^{4} = \dfrac{17}{16} \cos^{2}2x \ \ \ | \cdot 16](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7B1%20-%20%5Ccos%202x%7D%7B2%7D%20%5Cright%29%5E%7B4%7D%20%2B%20%5Cleft%28%5Cdfrac%7B1%20%2B%20%5Ccos%202x%7D%7B2%7D%20%5Cright%29%5E%7B4%7D%20%3D%20%5Cdfrac%7B17%7D%7B16%7D%20%5Ccos%5E%7B2%7D2x%20%5C%20%5C%20%5C%20%7C%20%5Ccdot%2016)
![(1 - \cos 2x)^{4} + (1 + \cos 2x)^{4} = 17 \cos^{2}2x (1 - \cos 2x)^{4} + (1 + \cos 2x)^{4} = 17 \cos^{2}2x](https://tex.z-dn.net/?f=%281%20-%20%5Ccos%202x%29%5E%7B4%7D%20%2B%20%281%20%2B%20%5Ccos%202x%29%5E%7B4%7D%20%3D%2017%20%5Ccos%5E%7B2%7D2x)
![(1) \ (1 - \cos 2x)^{4} = 1 - 4\cos 2x + 6\cos^{2} 2x - 4\cos^{3}2x + \cos^{4}2x\\(2) \ (1 + \cos 2x)^{4} = 1 + 4\cos 2x + 6\cos^{2} 2x + 4\cos^{3}2x + \cos^{4}2x (1) \ (1 - \cos 2x)^{4} = 1 - 4\cos 2x + 6\cos^{2} 2x - 4\cos^{3}2x + \cos^{4}2x\\(2) \ (1 + \cos 2x)^{4} = 1 + 4\cos 2x + 6\cos^{2} 2x + 4\cos^{3}2x + \cos^{4}2x](https://tex.z-dn.net/?f=%281%29%20%5C%20%281%20-%20%5Ccos%202x%29%5E%7B4%7D%20%3D%201%20-%204%5Ccos%202x%20%2B%206%5Ccos%5E%7B2%7D%202x%20-%204%5Ccos%5E%7B3%7D2x%20%2B%20%5Ccos%5E%7B4%7D2x%5C%5C%282%29%20%5C%20%281%20%2B%20%5Ccos%202x%29%5E%7B4%7D%20%3D%201%20%2B%204%5Ccos%202x%20%2B%206%5Ccos%5E%7B2%7D%202x%20%2B%204%5Ccos%5E%7B3%7D2x%20%2B%20%5Ccos%5E%7B4%7D2x)
Складываем
и
выражения и получаем:
![2 + 12 \cos^{2} 2x + 2\cos^{4}2x = 17\cos^{2}2x 2 + 12 \cos^{2} 2x + 2\cos^{4}2x = 17\cos^{2}2x](https://tex.z-dn.net/?f=2%20%2B%2012%20%5Ccos%5E%7B2%7D%202x%20%2B%202%5Ccos%5E%7B4%7D2x%20%3D%2017%5Ccos%5E%7B2%7D2x)
![2\cos^{4}2x - 5\cos^{2}2x + 2 = 0 2\cos^{4}2x - 5\cos^{2}2x + 2 = 0](https://tex.z-dn.net/?f=2%5Ccos%5E%7B4%7D2x%20-%205%5Ccos%5E%7B2%7D2x%20%2B%202%20%3D%200)
Замена: ![\cos^{2} 2x = t, \ t \in [0; \ 1] \cos^{2} 2x = t, \ t \in [0; \ 1]](https://tex.z-dn.net/?f=%5Ccos%5E%7B2%7D%202x%20%3D%20t%2C%20%5C%20t%20%5Cin%20%5B0%3B%20%5C%201%5D)
Характеристическое уравнение:
![2t^{2} - 5t + 2 = 0 2t^{2} - 5t + 2 = 0](https://tex.z-dn.net/?f=2t%5E%7B2%7D%20-%205t%20%2B%202%20%3D%200)
![D = (-5)^{2} - 4 \cdot 2 \cdot 2 = 25 - 16 = 9 D = (-5)^{2} - 4 \cdot 2 \cdot 2 = 25 - 16 = 9](https://tex.z-dn.net/?f=D%20%3D%20%28-5%29%5E%7B2%7D%20-%204%20%5Ccdot%202%20%5Ccdot%202%20%3D%2025%20-%2016%20%3D%209)
1" alt="t_{1} = \dfrac{5 + \sqrt{9}}{2 \cdot 2} = \dfrac{5 + 3}{4} = 2 > 1" align="absmiddle" class="latex-formula"> — не удовлетворяет условию
![t_{2} = \dfrac{5 - \sqrt{9}}{2 \cdot 2} = \dfrac{5 - 3}{4} = \dfrac{1}{2} t_{2} = \dfrac{5 - \sqrt{9}}{2 \cdot 2} = \dfrac{5 - 3}{4} = \dfrac{1}{2}](https://tex.z-dn.net/?f=t_%7B2%7D%20%3D%20%5Cdfrac%7B5%20-%20%5Csqrt%7B9%7D%7D%7B2%20%5Ccdot%202%7D%20%3D%20%5Cdfrac%7B5%20-%203%7D%7B4%7D%20%3D%20%5Cdfrac%7B1%7D%7B2%7D)
Обратная замена:
![\cos^{2} 2x = \dfrac{1}{2} \cos^{2} 2x = \dfrac{1}{2}](https://tex.z-dn.net/?f=%5Ccos%5E%7B2%7D%202x%20%3D%20%5Cdfrac%7B1%7D%7B2%7D)
![\displaystyle \left [ {{\cos 2x = \sqrt{\dfrac{1}{2} } \ \ } \atop {\cos 2x = -\sqrt{\dfrac{1}{2}}} \right. \displaystyle \left [ {{\cos 2x = \sqrt{\dfrac{1}{2} } \ \ } \atop {\cos 2x = -\sqrt{\dfrac{1}{2}}} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5B%20%7B%7B%5Ccos%202x%20%3D%20%5Csqrt%7B%5Cdfrac%7B1%7D%7B2%7D%20%7D%20%5C%20%5C%20%7D%20%5Catop%20%7B%5Ccos%202x%20%3D%20-%5Csqrt%7B%5Cdfrac%7B1%7D%7B2%7D%7D%7D%20%5Cright.)
![\displaystyle \left [ {{\cos 2x = \dfrac{\sqrt{2}}{2} \ \ \ \ \ (1) } \atop {\cos 2x = -\dfrac{\sqrt{2}}{2} \ \ \ (2)} \right. \displaystyle \left [ {{\cos 2x = \dfrac{\sqrt{2}}{2} \ \ \ \ \ (1) } \atop {\cos 2x = -\dfrac{\sqrt{2}}{2} \ \ \ (2)} \right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5B%20%7B%7B%5Ccos%202x%20%3D%20%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%281%29%20%7D%20%5Catop%20%7B%5Ccos%202x%20%3D%20-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%5C%20%5C%20%5C%20%20%282%29%7D%20%5Cright.)
Решим
уравнение:
![\cos 2x = \dfrac{\sqrt{2}}{2} \cos 2x = \dfrac{\sqrt{2}}{2}](https://tex.z-dn.net/?f=%5Ccos%202x%20%3D%20%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D)
![2x = \pm \arccos \dfrac{\sqrt{2}}{2} + 2\pi n, \ n \in Z 2x = \pm \arccos \dfrac{\sqrt{2}}{2} + 2\pi n, \ n \in Z](https://tex.z-dn.net/?f=2x%20%3D%20%5Cpm%20%5Carccos%20%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%2B%202%5Cpi%20n%2C%20%5C%20n%20%5Cin%20Z)
![2x = \pm \dfrac{\pi}{4} + 2\pi n, \ n \in Z 2x = \pm \dfrac{\pi}{4} + 2\pi n, \ n \in Z](https://tex.z-dn.net/?f=2x%20%3D%20%5Cpm%20%5Cdfrac%7B%5Cpi%7D%7B4%7D%20%20%2B%202%5Cpi%20n%2C%20%5C%20n%20%5Cin%20Z)
![x = \pm \dfrac{\pi}{8} + \pi n , \ n \in Z x = \pm \dfrac{\pi}{8} + \pi n , \ n \in Z](https://tex.z-dn.net/?f=x%20%3D%20%5Cpm%20%5Cdfrac%7B%5Cpi%7D%7B8%7D%20%20%2B%20%5Cpi%20n%20%2C%20%5C%20n%20%5Cin%20Z)
Решим
уравнение:
![\cos 2x = -\dfrac{\sqrt{2}}{2} \cos 2x = -\dfrac{\sqrt{2}}{2}](https://tex.z-dn.net/?f=%5Ccos%202x%20%3D%20-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D)
![2x = \pm \arccos \left( -\dfrac{\sqrt{2}}{2}\right) + 2\pi n, \ n \in Z 2x = \pm \arccos \left( -\dfrac{\sqrt{2}}{2}\right) + 2\pi n, \ n \in Z](https://tex.z-dn.net/?f=2x%20%3D%20%5Cpm%20%5Carccos%20%5Cleft%28%20-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Cright%29%20%2B%202%5Cpi%20n%2C%20%5C%20n%20%5Cin%20Z)
![2x = \pm \left(\pi - \arccos \dfrac{\sqrt{2}}{2} \right) + 2 \pi n, \ n \in Z 2x = \pm \left(\pi - \arccos \dfrac{\sqrt{2}}{2} \right) + 2 \pi n, \ n \in Z](https://tex.z-dn.net/?f=2x%20%3D%20%5Cpm%20%5Cleft%28%5Cpi%20-%20%5Carccos%20%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%20%5Cright%29%20%2B%202%20%5Cpi%20n%2C%20%5C%20n%20%5Cin%20Z)
![2x = \pm \left(\pi - \dfrac{\pi}{4} \right) + 2 \pi n, \ n \in Z 2x = \pm \left(\pi - \dfrac{\pi}{4} \right) + 2 \pi n, \ n \in Z](https://tex.z-dn.net/?f=2x%20%3D%20%5Cpm%20%5Cleft%28%5Cpi%20-%20%5Cdfrac%7B%5Cpi%7D%7B4%7D%20%5Cright%29%20%2B%202%20%5Cpi%20n%2C%20%5C%20n%20%5Cin%20Z)
![2x = \pm \dfrac{3\pi}{4} + 2\pi n, \ n \in Z 2x = \pm \dfrac{3\pi}{4} + 2\pi n, \ n \in Z](https://tex.z-dn.net/?f=2x%20%3D%20%5Cpm%20%5Cdfrac%7B3%5Cpi%7D%7B4%7D%20%20%2B%202%5Cpi%20n%2C%20%5C%20n%20%5Cin%20Z)
![x = \pm \dfrac{3\pi}{8} + \pi n , \ n \in Z x = \pm \dfrac{3\pi}{8} + \pi n , \ n \in Z](https://tex.z-dn.net/?f=x%20%3D%20%5Cpm%20%5Cdfrac%7B3%5Cpi%7D%7B8%7D%20%20%2B%20%5Cpi%20n%20%2C%20%5C%20n%20%5Cin%20Z)
Изобразим полученные ответы на единичной окружности и найдем общее решение.
Из рисунка видим, что через каждые
получаем ответ.
Таким образом, общий ответ:
![x = \dfrac{\pi}{8} + \dfrac{\pi n}{4}, \ n \in Z x = \dfrac{\pi}{8} + \dfrac{\pi n}{4}, \ n \in Z](https://tex.z-dn.net/?f=x%20%3D%20%5Cdfrac%7B%5Cpi%7D%7B8%7D%20%2B%20%5Cdfrac%7B%5Cpi%20n%7D%7B4%7D%2C%20%5C%20n%20%5Cin%20Z)
Ответ: ![x = \dfrac{\pi}{8} + \dfrac{\pi n}{4}, \ n \in Z x = \dfrac{\pi}{8} + \dfrac{\pi n}{4}, \ n \in Z](https://tex.z-dn.net/?f=x%20%3D%20%5Cdfrac%7B%5Cpi%7D%7B8%7D%20%2B%20%5Cdfrac%7B%5Cpi%20n%7D%7B4%7D%2C%20%5C%20n%20%5Cin%20Z)