- n-ый член прогрессии. Тогда:
lg(b_5) = \frac{8}{9} => lg(b_5^2) = \frac{16}{9} => b_5^2 = 10^{\frac{16}{9}} = b_0^2 * q^{8} = b_0 * b_0*q^{8} = b_0 * b_8" alt="\sum\limits^8_{j=0} lg(b_j) = lg(\Pi \limits^8_{j=0} b_j) = lg(b_0^9*q^{\sum\limits^8_{j=1}j}) = lg(b_0^9*q^{36}) = 9lg(b_0*q^4) = 8 => lg(b_5) = \frac{8}{9} => lg(b_5^2) = \frac{16}{9} => b_5^2 = 10^{\frac{16}{9}} = b_0^2 * q^{8} = b_0 * b_0*q^{8} = b_0 * b_8" align="absmiddle" class="latex-formula">
Ответ: