В правильной яетырехугольной пирамиде площадь боковой грани равна 12 а площадь основания...

+836 голосов
635k просмотров

В правильной яетырехугольной пирамиде площадь боковой грани равна 12 а площадь основания 64 найдите длину бокового ребра пирамиды.


Геометрия (13 баллов) | 635k просмотров
+163

Боковое ребро 5

Дано ответов: 2
+76 голосов
Правильный ответ

Здесь и чертежа не надо. Просто проверка формул.

В основании квадрат. Его площадь равна 64, сторона 8, тогда площадь боковой грани равна произведению апофемы  на половину стороны основания , т.е а=8, апофема l, по условию 12=8*l/2, откуда апофема равна 24/8=3, а боковое ребро по теореме Пифагора найдем как корень квадратный из суммы квадратов апофемы и ее проекции на плоскость основания, т.е . на половину стороны основания, 4, получим √(3²+4²)=5

(151k баллов)
+123 голосов

В основании правильной четырехугольной пирамиды лежит квадрат. Так как по условию задачи площадь основания равна 64, найдем сторону основания: S = а², а = 8

Все боковые ребра правильной пирамиды равны. Боковые грани – равные между собой равнобедренные треугольники. По условию задачи площадь боковой грани равна 12. Найдем апофему – высоту боковой грани из площади треугольника:

S = 1/2 аh, где а – основание треугольника, h – его высота.

12 = 1/2 8·h, h = 3

Найдем длину бокового ребра пирамиды L из прямоугольного треугольника:

L =√4² + 3² = √16 + 9 = √25 = 5

Ответ: 5 (ед.измер.)

(12.2k баллов)