1\ \ ,\ \ \ \dfrac{3b-7}{4b}-1>0\ \ ,\ \ \dfrac{3b-7-4b}{4b}>0\ \ ,\ \ \dfrac{-(b+7)}{4b}>0\ ,\\\\\\\dfrac{b+7}{4b}0\\4b" alt="2b(3-x)+x(2-b)=2b-5x\\\\6b-2bx+2x-bx=2b-5x\\\\7x-3bx=-4b\\\\x\cdot (7-3b)=-4b\\\\x=-\dfrac{7-3b}{4b}\ \ ,\\\\x=\dfrac{3b-7}{4b}>1\ \ ,\ \ \ \dfrac{3b-7}{4b}-1>0\ \ ,\ \ \dfrac{3b-7-4b}{4b}>0\ \ ,\ \ \dfrac{-(b+7)}{4b}>0\ ,\\\\\\\dfrac{b+7}{4b}0\\4b" align="absmiddle" class="latex-formula">
-7\\b" alt="\left\{\begin{array}{ccc}b0\end{array}\right\ \ ili\ \ \left\{\begin{array}{ccc}b>-7\\b" align="absmiddle" class="latex-formula">