Ответ:
Решение по методу математической индукции
Пошаговое объяснение:
Первый пункт: проверяем базу индукции:
1=(1*(1+1))/2 получаем что 1=(1*2)/2 <=> 1=1 База индукции выполняется.
Второй шаг, предполагаем, что это верно для любого k=n, то есть
1+2+...+k=k(k+1)/2, тогда доказываем, что формула верна и для k+1, то есть в формулу вместо k везде подставляем k+1, получаем:
1+2+...+k+(k+1)=(k+1)((k+1)+1)/2
так как по нашему предположению, 1+2+...+k=k(k+1)/2 верно, то в 1+2+...+k+(k+1)=(k+1)((k+1)+1)/2 вместо 1+2+...+k можно подставить то, чему это равно, то есть k(k+1)/2, почему можем, я выделила жирным. подставляем в 1+2+...+k+(k+1)=(k+1)((k+1)+1)/2 вместо 1+2+...+k - k(k+1)/2, тогда получается
k(k+1)/2+(k+1)=(k+1)((k+1)+1)/2 а теперь проверяем, равны ли обе части равенства, или нет, если равны, то все хорошо, равенство доказано, а если не равны, то предположение не верно и доказано обратное.
раскрываем скобки и приводим к общему знаменателю справа, получаем
(k^2+3k+2)/2
а теперь раскрываем скобки слева, получаем
(k^2+3k+2)/2
это то же самое что и справа. Из того, что получили слева и справа равные выражения, и из того, что формула верна для n=k, получили что она равна и для k+1, а следовательно, она верна для любого натурального k. Что и требовалось доказать.