Ответ:
√61
Объяснение:
Найдём производную относительно x (то есть представим выражение как функцию z с параметром y):
![z'=\dfrac{1}{2\sqrt{(x-3)^2+4}}\cdot((x-3)^2+4)'+\dfrac{1}{2\sqrt{x^2+y^2}}\cdot (x^2+y^2)'=\\=\dfrac{x-3}{\sqrt{(x-3)^2+4}}+\dfrac{x}{\sqrt{x^2+y^2}} z'=\dfrac{1}{2\sqrt{(x-3)^2+4}}\cdot((x-3)^2+4)'+\dfrac{1}{2\sqrt{x^2+y^2}}\cdot (x^2+y^2)'=\\=\dfrac{x-3}{\sqrt{(x-3)^2+4}}+\dfrac{x}{\sqrt{x^2+y^2}}](https://tex.z-dn.net/?f=z%27%3D%5Cdfrac%7B1%7D%7B2%5Csqrt%7B%28x-3%29%5E2%2B4%7D%7D%5Ccdot%28%28x-3%29%5E2%2B4%29%27%2B%5Cdfrac%7B1%7D%7B2%5Csqrt%7Bx%5E2%2By%5E2%7D%7D%5Ccdot%20%28x%5E2%2By%5E2%29%27%3D%5C%5C%3D%5Cdfrac%7Bx-3%7D%7B%5Csqrt%7B%28x-3%29%5E2%2B4%7D%7D%2B%5Cdfrac%7Bx%7D%7B%5Csqrt%7Bx%5E2%2By%5E2%7D%7D)
Аналогично найдём производную относительно y:
![z'=\dfrac{1}{2\sqrt{x^2+y^2}}\cdot (x^2+y^2)'+\dfrac{1}{2\sqrt{(y-3)^2+9}}\cdot ((y-3)^2+9)'=\\=\dfrac{y}{\sqrt{x^2+y^2}}+\dfrac{y-3}{\sqrt{(y-3)^2+9}} z'=\dfrac{1}{2\sqrt{x^2+y^2}}\cdot (x^2+y^2)'+\dfrac{1}{2\sqrt{(y-3)^2+9}}\cdot ((y-3)^2+9)'=\\=\dfrac{y}{\sqrt{x^2+y^2}}+\dfrac{y-3}{\sqrt{(y-3)^2+9}}](https://tex.z-dn.net/?f=z%27%3D%5Cdfrac%7B1%7D%7B2%5Csqrt%7Bx%5E2%2By%5E2%7D%7D%5Ccdot%20%28x%5E2%2By%5E2%29%27%2B%5Cdfrac%7B1%7D%7B2%5Csqrt%7B%28y-3%29%5E2%2B9%7D%7D%5Ccdot%20%28%28y-3%29%5E2%2B9%29%27%3D%5C%5C%3D%5Cdfrac%7By%7D%7B%5Csqrt%7Bx%5E2%2By%5E2%7D%7D%2B%5Cdfrac%7By-3%7D%7B%5Csqrt%7B%28y-3%29%5E2%2B9%7D%7D)
Найдём точки экстремума. Для этого обе производные должны быть одновременно равны нулю:
![\begin{cases}\dfrac{x-3}{\sqrt{(x-3)^2+4}}+\dfrac{x}{\sqrt{x^2+y^2}}=0,\\\dfrac{y}{\sqrt{x^2+y^2}}+\dfrac{y-3}{\sqrt{(y-3)^2+9}}=0\end{cases} \begin{cases}\dfrac{x-3}{\sqrt{(x-3)^2+4}}+\dfrac{x}{\sqrt{x^2+y^2}}=0,\\\dfrac{y}{\sqrt{x^2+y^2}}+\dfrac{y-3}{\sqrt{(y-3)^2+9}}=0\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cdfrac%7Bx-3%7D%7B%5Csqrt%7B%28x-3%29%5E2%2B4%7D%7D%2B%5Cdfrac%7Bx%7D%7B%5Csqrt%7Bx%5E2%2By%5E2%7D%7D%3D0%2C%5C%5C%5Cdfrac%7By%7D%7B%5Csqrt%7Bx%5E2%2By%5E2%7D%7D%2B%5Cdfrac%7By-3%7D%7B%5Csqrt%7B%28y-3%29%5E2%2B9%7D%7D%3D0%5Cend%7Bcases%7D)
Выразим y² из первого уравнения:
![\dfrac{x}{\sqrt{x^2+y^2}}=-\dfrac{x-3}{\sqrt{(x-3)^2+4}}\\\dfrac{1}{\sqrt{x^2+y^2}}=-\dfrac{x-3}{x\sqrt{(x-3)^2+4}}\\\sqrt{x^2+y^2}=-\dfrac{x\sqrt{(x-3)^2+4}}{x-3} \dfrac{x}{\sqrt{x^2+y^2}}=-\dfrac{x-3}{\sqrt{(x-3)^2+4}}\\\dfrac{1}{\sqrt{x^2+y^2}}=-\dfrac{x-3}{x\sqrt{(x-3)^2+4}}\\\sqrt{x^2+y^2}=-\dfrac{x\sqrt{(x-3)^2+4}}{x-3}](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%7D%7B%5Csqrt%7Bx%5E2%2By%5E2%7D%7D%3D-%5Cdfrac%7Bx-3%7D%7B%5Csqrt%7B%28x-3%29%5E2%2B4%7D%7D%5C%5C%5Cdfrac%7B1%7D%7B%5Csqrt%7Bx%5E2%2By%5E2%7D%7D%3D-%5Cdfrac%7Bx-3%7D%7Bx%5Csqrt%7B%28x-3%29%5E2%2B4%7D%7D%5C%5C%5Csqrt%7Bx%5E2%2By%5E2%7D%3D-%5Cdfrac%7Bx%5Csqrt%7B%28x-3%29%5E2%2B4%7D%7D%7Bx-3%7D)
Левая часть положительна (нулём быть не может, так как она была в знаменателе), значит, и правая часть положительна:
0|:-\sqrt{(x-3)^2+4}" alt="-\dfrac{x\sqrt{(x-3)^2+4}}{x-3}>0|:-\sqrt{(x-3)^2+4}" align="absmiddle" class="latex-formula">
![x^2+y^2=\dfrac{x^2((x-3)^2+4)}{(x-3)^2}\\y^2=\dfrac{x^2(x-3)^2+4x^2}{(x-3)^2}-x^2\\y^2=\dfrac{4x^2}{(x-3)^2}\Rightarrow y=\pm\dfrac{2x}{x-3} x^2+y^2=\dfrac{x^2((x-3)^2+4)}{(x-3)^2}\\y^2=\dfrac{x^2(x-3)^2+4x^2}{(x-3)^2}-x^2\\y^2=\dfrac{4x^2}{(x-3)^2}\Rightarrow y=\pm\dfrac{2x}{x-3}](https://tex.z-dn.net/?f=x%5E2%2By%5E2%3D%5Cdfrac%7Bx%5E2%28%28x-3%29%5E2%2B4%29%7D%7B%28x-3%29%5E2%7D%5C%5Cy%5E2%3D%5Cdfrac%7Bx%5E2%28x-3%29%5E2%2B4x%5E2%7D%7B%28x-3%29%5E2%7D-x%5E2%5C%5Cy%5E2%3D%5Cdfrac%7B4x%5E2%7D%7B%28x-3%29%5E2%7D%5CRightarrow%20y%3D%5Cpm%5Cdfrac%7B2x%7D%7Bx-3%7D)
Выразим x² из второго уравнения (уравнения практически одинаковые, поэтому некоторые преобразования я опущу):
0\Rightarrow 0" alt="\sqrt{x^2+y^2}=-\dfrac{y\sqrt{(y-3)^2+9}}{y-3}>0\Rightarrow 0" align="absmiddle" class="latex-formula">
Подставим
:
![x^2=\dfrac{9\cdot\frac{4x^2}{(x-3)^2}}{(\frac{2x}{x-3}-3)^2}\\x^2=\dfrac{36x^2}{(x-3)^2(\frac{2x}{x-3}-3)^2}|:x^2\neq 0\\1=\dfrac{36}{(2x-3(x-3))^2}\\(2x-3x+9)^2=36\\(9-x)^2=36\\\displaystyle \left [ {{x-9=6} \atop {x-9=-6}} \right. \left [ {{x=15} \atop {x=3}} \right. x^2=\dfrac{9\cdot\frac{4x^2}{(x-3)^2}}{(\frac{2x}{x-3}-3)^2}\\x^2=\dfrac{36x^2}{(x-3)^2(\frac{2x}{x-3}-3)^2}|:x^2\neq 0\\1=\dfrac{36}{(2x-3(x-3))^2}\\(2x-3x+9)^2=36\\(9-x)^2=36\\\displaystyle \left [ {{x-9=6} \atop {x-9=-6}} \right. \left [ {{x=15} \atop {x=3}} \right.](https://tex.z-dn.net/?f=x%5E2%3D%5Cdfrac%7B9%5Ccdot%5Cfrac%7B4x%5E2%7D%7B%28x-3%29%5E2%7D%7D%7B%28%5Cfrac%7B2x%7D%7Bx-3%7D-3%29%5E2%7D%5C%5Cx%5E2%3D%5Cdfrac%7B36x%5E2%7D%7B%28x-3%29%5E2%28%5Cfrac%7B2x%7D%7Bx-3%7D-3%29%5E2%7D%7C%3Ax%5E2%5Cneq%200%5C%5C1%3D%5Cdfrac%7B36%7D%7B%282x-3%28x-3%29%29%5E2%7D%5C%5C%282x-3x%2B9%29%5E2%3D36%5C%5C%289-x%29%5E2%3D36%5C%5C%5Cdisplaystyle%20%5Cleft%20%5B%20%7B%7Bx-9%3D6%7D%20%5Catop%20%7Bx-9%3D-6%7D%7D%20%5Cright.%20%5Cleft%20%5B%20%7B%7Bx%3D15%7D%20%5Catop%20%7Bx%3D3%7D%7D%20%5Cright.)
Так как 0 < x < 3, в данном случае корней нет.
Подставим
:
![x^2=\dfrac{9\cdot\frac{4x^2}{(x-3)^2}}{(-\frac{2x}{x-3}-3)^2}\\x^2=\dfrac{36x^2}{(x-3)^2(\frac{2x}{x-3}+3)^2}|:x^2\neq 0\\1=\dfrac{36}{(2x+3(x-3))^2}\\(2x+3x-9)^2=36\\(5x-9)^2=36\\\displaystyle\left [ {{5x-9=6} \atop {5x-9=-6}} \right. \left [ {{x=3} \atop {x=\frac{3}{5}}} \right. x^2=\dfrac{9\cdot\frac{4x^2}{(x-3)^2}}{(-\frac{2x}{x-3}-3)^2}\\x^2=\dfrac{36x^2}{(x-3)^2(\frac{2x}{x-3}+3)^2}|:x^2\neq 0\\1=\dfrac{36}{(2x+3(x-3))^2}\\(2x+3x-9)^2=36\\(5x-9)^2=36\\\displaystyle\left [ {{5x-9=6} \atop {5x-9=-6}} \right. \left [ {{x=3} \atop {x=\frac{3}{5}}} \right.](https://tex.z-dn.net/?f=x%5E2%3D%5Cdfrac%7B9%5Ccdot%5Cfrac%7B4x%5E2%7D%7B%28x-3%29%5E2%7D%7D%7B%28-%5Cfrac%7B2x%7D%7Bx-3%7D-3%29%5E2%7D%5C%5Cx%5E2%3D%5Cdfrac%7B36x%5E2%7D%7B%28x-3%29%5E2%28%5Cfrac%7B2x%7D%7Bx-3%7D%2B3%29%5E2%7D%7C%3Ax%5E2%5Cneq%200%5C%5C1%3D%5Cdfrac%7B36%7D%7B%282x%2B3%28x-3%29%29%5E2%7D%5C%5C%282x%2B3x-9%29%5E2%3D36%5C%5C%285x-9%29%5E2%3D36%5C%5C%5Cdisplaystyle%5Cleft%20%5B%20%7B%7B5x-9%3D6%7D%20%5Catop%20%7B5x-9%3D-6%7D%7D%20%5Cright.%20%5Cleft%20%5B%20%7B%7Bx%3D3%7D%20%5Catop%20%7Bx%3D%5Cfrac%7B3%7D%7B5%7D%7D%7D%20%5Cright.)
Так как 0 < x < 3, подходит только один корень
.
— удовлетворяет условию 0 < y < 3.
— точка экстремума.
Исследуем знаки производной относительно x при
. При
, например, при
, производная имеет знак:
![\dfrac{\frac{1}{2}-3}{\sqrt{(\frac{1}{2}-3)^2+4}}+\dfrac{\frac{1}{2}}{\sqrt{\frac{1}{4}+\frac{1}{4}}}=\dfrac{-\frac{5}{2}}{\sqrt{\frac{25}{4}+4}}+\dfrac{\frac{1}{2}}{\sqrt{\frac{1}{2}}}=-\dfrac{\frac{5}{2}}{\frac{\sqrt{41}}{2}}+\sqrt{\dfrac{1}{2}}=-\dfrac{5}{\sqrt{41}}+\dfrac{1}{\sqrt{2}}\\-\dfrac{5}{\sqrt{41}}+\dfrac{1}{\sqrt{2}}\vee 0\\\dfrac{1}{\sqrt{2}}\vee\dfrac{5}{\sqrt{41}}\\\dfrac{1}{2}\vee\dfrac{25}{41}\\41 \dfrac{\frac{1}{2}-3}{\sqrt{(\frac{1}{2}-3)^2+4}}+\dfrac{\frac{1}{2}}{\sqrt{\frac{1}{4}+\frac{1}{4}}}=\dfrac{-\frac{5}{2}}{\sqrt{\frac{25}{4}+4}}+\dfrac{\frac{1}{2}}{\sqrt{\frac{1}{2}}}=-\dfrac{\frac{5}{2}}{\frac{\sqrt{41}}{2}}+\sqrt{\dfrac{1}{2}}=-\dfrac{5}{\sqrt{41}}+\dfrac{1}{\sqrt{2}}\\-\dfrac{5}{\sqrt{41}}+\dfrac{1}{\sqrt{2}}\vee 0\\\dfrac{1}{\sqrt{2}}\vee\dfrac{5}{\sqrt{41}}\\\dfrac{1}{2}\vee\dfrac{25}{41}\\41](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cfrac%7B1%7D%7B2%7D-3%7D%7B%5Csqrt%7B%28%5Cfrac%7B1%7D%7B2%7D-3%29%5E2%2B4%7D%7D%2B%5Cdfrac%7B%5Cfrac%7B1%7D%7B2%7D%7D%7B%5Csqrt%7B%5Cfrac%7B1%7D%7B4%7D%2B%5Cfrac%7B1%7D%7B4%7D%7D%7D%3D%5Cdfrac%7B-%5Cfrac%7B5%7D%7B2%7D%7D%7B%5Csqrt%7B%5Cfrac%7B25%7D%7B4%7D%2B4%7D%7D%2B%5Cdfrac%7B%5Cfrac%7B1%7D%7B2%7D%7D%7B%5Csqrt%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%3D-%5Cdfrac%7B%5Cfrac%7B5%7D%7B2%7D%7D%7B%5Cfrac%7B%5Csqrt%7B41%7D%7D%7B2%7D%7D%2B%5Csqrt%7B%5Cdfrac%7B1%7D%7B2%7D%7D%3D-%5Cdfrac%7B5%7D%7B%5Csqrt%7B41%7D%7D%2B%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5C%5C-%5Cdfrac%7B5%7D%7B%5Csqrt%7B41%7D%7D%2B%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5Cvee%200%5C%5C%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5Cvee%5Cdfrac%7B5%7D%7B%5Csqrt%7B41%7D%7D%5C%5C%5Cdfrac%7B1%7D%7B2%7D%5Cvee%5Cdfrac%7B25%7D%7B41%7D%5C%5C41%3C50)
Производная имеет знак минус. При
\dfrac{3}{5}" alt="x>\dfrac{3}{5}" align="absmiddle" class="latex-formula">, например, при x = 1, производная имеет знак:
\dfrac{1}{2}" alt="\dfrac{1-3}{\sqrt{(1-3)^2+4}}+\dfrac{1}{\sqrt{1+\frac{1}{4}}}=-\dfrac{2}{\sqrt{8}}+\dfrac{1}{\frac{\sqrt{5}}{2}}=-\dfrac{1}{\sqrt{2}}+\dfrac{2}{\sqrt{5}}\vee 0\\\dfrac{2}{\sqrt{5}}\vee \dfrac{1}{\sqrt{2}}\\\dfrac{4}{5}> \dfrac{1}{2}" align="absmiddle" class="latex-formula">
Производная имеет знак плюс. Значит,
— точка минимума.
Аналогично исследуем знаки производной относительно y при
. При
, например, при
, производная имеет знак:
![\dfrac{\frac{1}{4}}{\sqrt{\frac{9}{25}+\frac{1}{16}}}+\dfrac{\frac{1}{4}-3}{\sqrt{(\frac{1}{4}-3)^2+9}}=\dfrac{\frac{1}{4}}{\frac{13}{20}}-\dfrac{\frac{11}{4}}{\frac{\sqrt{265}}{4}}=\dfrac{5}{13}-\dfrac{11}{\sqrt{265}}\vee 0\\\dfrac{5}{13}\vee \dfrac{11}{\sqrt{265}}\\\dfrac{25}{169}< \dfrac{121}{265} \dfrac{\frac{1}{4}}{\sqrt{\frac{9}{25}+\frac{1}{16}}}+\dfrac{\frac{1}{4}-3}{\sqrt{(\frac{1}{4}-3)^2+9}}=\dfrac{\frac{1}{4}}{\frac{13}{20}}-\dfrac{\frac{11}{4}}{\frac{\sqrt{265}}{4}}=\dfrac{5}{13}-\dfrac{11}{\sqrt{265}}\vee 0\\\dfrac{5}{13}\vee \dfrac{11}{\sqrt{265}}\\\dfrac{25}{169}< \dfrac{121}{265}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cfrac%7B1%7D%7B4%7D%7D%7B%5Csqrt%7B%5Cfrac%7B9%7D%7B25%7D%2B%5Cfrac%7B1%7D%7B16%7D%7D%7D%2B%5Cdfrac%7B%5Cfrac%7B1%7D%7B4%7D-3%7D%7B%5Csqrt%7B%28%5Cfrac%7B1%7D%7B4%7D-3%29%5E2%2B9%7D%7D%3D%5Cdfrac%7B%5Cfrac%7B1%7D%7B4%7D%7D%7B%5Cfrac%7B13%7D%7B20%7D%7D-%5Cdfrac%7B%5Cfrac%7B11%7D%7B4%7D%7D%7B%5Cfrac%7B%5Csqrt%7B265%7D%7D%7B4%7D%7D%3D%5Cdfrac%7B5%7D%7B13%7D-%5Cdfrac%7B11%7D%7B%5Csqrt%7B265%7D%7D%5Cvee%200%5C%5C%5Cdfrac%7B5%7D%7B13%7D%5Cvee%20%5Cdfrac%7B11%7D%7B%5Csqrt%7B265%7D%7D%5C%5C%5Cdfrac%7B25%7D%7B169%7D%3C%20%5Cdfrac%7B121%7D%7B265%7D)
Производная имеет знак минус. При
\dfrac{1}{2}" alt="y>\dfrac{1}{2}" align="absmiddle" class="latex-formula">, например, при y = 1, производная имеет знак:
\dfrac{4}{13}" alt="\dfrac{1}{\sqrt{\frac{9}{25}+1}}+\dfrac{1-3}{\sqrt{(1-3)^2+9}}=\dfrac{1}{\frac{\sqrt{34}}{5}}-\dfrac{2}{\sqrt{13}}=\dfrac{5}{\sqrt{34}}-\dfrac{2}{\sqrt{13}}\vee 0\\\dfrac{5}{\sqrt{34}}\vee\dfrac{2}{\sqrt{13}}\\\dfrac{25}{34}>\dfrac{4}{13}" align="absmiddle" class="latex-formula">
Производная имеет знак плюс. Значит,
— точка минимума.
Значит,
— точка минимума всей функции. Значение выражения в данной точке равно:
![\sqrt{\left(\dfrac{3}{5}-3\right)^2+4}+\sqrt{\left(\dfrac{3}{5}\right)^2+\left(\dfrac{1}{2}\right)^2}+\sqrt{\left(\dfrac{1}{2}-3\right)^2+9}=\\=\sqrt{\dfrac{244}{25}}+\sqrt{\dfrac{61}{100}}+\sqrt{\dfrac{61}{4}}=\dfrac{2\sqrt{61}}{5}+\dfrac{\sqrt{61}}{10}+\dfrac{\sqrt{61}}{2}=\sqrt{61} \sqrt{\left(\dfrac{3}{5}-3\right)^2+4}+\sqrt{\left(\dfrac{3}{5}\right)^2+\left(\dfrac{1}{2}\right)^2}+\sqrt{\left(\dfrac{1}{2}-3\right)^2+9}=\\=\sqrt{\dfrac{244}{25}}+\sqrt{\dfrac{61}{100}}+\sqrt{\dfrac{61}{4}}=\dfrac{2\sqrt{61}}{5}+\dfrac{\sqrt{61}}{10}+\dfrac{\sqrt{61}}{2}=\sqrt{61}](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cleft%28%5Cdfrac%7B3%7D%7B5%7D-3%5Cright%29%5E2%2B4%7D%2B%5Csqrt%7B%5Cleft%28%5Cdfrac%7B3%7D%7B5%7D%5Cright%29%5E2%2B%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D%5Cright%29%5E2%7D%2B%5Csqrt%7B%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D-3%5Cright%29%5E2%2B9%7D%3D%5C%5C%3D%5Csqrt%7B%5Cdfrac%7B244%7D%7B25%7D%7D%2B%5Csqrt%7B%5Cdfrac%7B61%7D%7B100%7D%7D%2B%5Csqrt%7B%5Cdfrac%7B61%7D%7B4%7D%7D%3D%5Cdfrac%7B2%5Csqrt%7B61%7D%7D%7B5%7D%2B%5Cdfrac%7B%5Csqrt%7B61%7D%7D%7B10%7D%2B%5Cdfrac%7B%5Csqrt%7B61%7D%7D%7B2%7D%3D%5Csqrt%7B61%7D)