Решите неравенство ;

+435 голосов
534k просмотров

Решите неравенство ;


Алгебра (18.4k баллов) | 534k просмотров
Дано ответов: 2
+136 голосов
Правильный ответ

Решение задания прилагаю

(152k баллов)
+85 голосов

image0\Rightarrow log_3x\in \left ( -\infty ;-4 \right )\cup \left ( 0;+\infty \right )\\x\in \left ( 0;\frac{1}{81} \right )\cup \left ( 1;+\infty \right )\\" alt="\frac{log_39x-13}{log^2_3x+log_3x^4}\leq 1\Leftrightarrow \frac{2+log_3x-13}{log^2_3x+4log_3x}\leq 1\\\frac{-11log_3x-log^2_3x-4log_3x}{log_3x\left ( log_3x+4 \right )}\leq 0\Leftrightarrow \frac{1}{log_3x\left ( log_3x+4 \right )}\geq 0\\log_3x\left ( log_3x+4 \right )>0\Rightarrow log_3x\in \left ( -\infty ;-4 \right )\cup \left ( 0;+\infty \right )\\x\in \left ( 0;\frac{1}{81} \right )\cup \left ( 1;+\infty \right )\\" align="absmiddle" class="latex-formula">

(894 баллов)