Заметим, что один из корней кратности 1 характеристического уравнения совпадает с контрольным числом 3, а значит, согласно правилу Эйлера, при поиске частного решения неоднородного дифференциального уравнения его стандартный вид необходимо домножить на переменную в степени, равной кратности этого корня - т.е. .
\lambda=\pm3=>y_{oo}=C_1e^{3x}+C_2e^{-3x}\\ y_{r_H}=Ae^{3x}*x^1=Axe^{3x}=>A(3e^{3x}+3(e^{3x}+3xe^{3x}))-9Axe^{3x}=5e^{3x}\\ A*6e^{3x}=5e^{3x}=>A=\dfrac{5}{6}=>y_{r_H}=\dfrac{5}{6}xe^{3x}\\ y=\dfrac{5}{6}xe^{3x}+C_1e^{3x}+C_2e^{-3x}\\" alt="y''-9y=5e^{3x}\\ 1)\; \lambda^2-9=0=>\lambda=\pm3=>y_{oo}=C_1e^{3x}+C_2e^{-3x}\\ y_{r_H}=Ae^{3x}*x^1=Axe^{3x}=>A(3e^{3x}+3(e^{3x}+3xe^{3x}))-9Axe^{3x}=5e^{3x}\\ A*6e^{3x}=5e^{3x}=>A=\dfrac{5}{6}=>y_{r_H}=\dfrac{5}{6}xe^{3x}\\ y=\dfrac{5}{6}xe^{3x}+C_1e^{3x}+C_2e^{-3x}\\" align="absmiddle" class="latex-formula">
-2=C_1+C_2\\ y'(0)=1=>\left[y'=\dfrac{5}{6}(e^{3x}+3xe^{3x})+3C_1e^{3x}-3C_2e^{-3x}\right]=>\dfrac{5}{6}+3C_1-3C_2=1=>C_1-C_2=\dfrac{1}{18}=>C_1=-\dfrac{35}{36},C_2=-1\dfrac{1}{36}\\ y=\dfrac{5}{6}xe^{3x}-\dfrac{35}{36}e^{3x}-1\dfrac{1}{36}e^{-3x}" alt="2)\;y(0)=-2=>-2=C_1+C_2\\ y'(0)=1=>\left[y'=\dfrac{5}{6}(e^{3x}+3xe^{3x})+3C_1e^{3x}-3C_2e^{-3x}\right]=>\dfrac{5}{6}+3C_1-3C_2=1=>C_1-C_2=\dfrac{1}{18}=>C_1=-\dfrac{35}{36},C_2=-1\dfrac{1}{36}\\ y=\dfrac{5}{6}xe^{3x}-\dfrac{35}{36}e^{3x}-1\dfrac{1}{36}e^{-3x}" align="absmiddle" class="latex-formula">