Решите пожалуйста!!!

0 голосов
43 просмотров

Решите пожалуйста!!!


image

Математика (73 баллов) | 43 просмотров
Дан 1 ответ
0 голосов

1.
image0} \atop {\sin\phi<0}} \right.===>\phi\in(-\frac{3\pi}{2}+2\pi n;2\pi+2\pi n) ==>\\ ==>\phi=-\frac\pi4+2\pi n=\frac{7\pi}{4}+2\pi n\\ z=\sqrt2\left(\cos(\frac{7\pi}{4}+2\pi n)+i\sin(\frac{7\pi}{4}+2\pi n)\right);\\ \\ z=\sqrt2\cdot e^{i(\frac{7\pi}{4}+2\pi n)}" alt="z=1-i;\\ z=x+iy;\\ z=\rho\cdot(\cos\phi+i\sin\phi); \rho=\sqrt{x^2+y^2};\\ \phi=arctg\frac y x;\\ x=1;\ \ y=-1;\\ \rho=\sqrt{1^2+(-1)^2}=\sqrt{1+1}=\sqrt2;\\ \phi=arctg(\frac{-1}{1})+\pi n=arctg(-1)+\pi n=-\frac{\pi}{4}+\pi n;\\ \left \{ {{\cos\phi>0} \atop {\sin\phi<0}} \right.===>\phi\in(-\frac{3\pi}{2}+2\pi n;2\pi+2\pi n) ==>\\ ==>\phi=-\frac\pi4+2\pi n=\frac{7\pi}{4}+2\pi n\\ z=\sqrt2\left(\cos(\frac{7\pi}{4}+2\pi n)+i\sin(\frac{7\pi}{4}+2\pi n)\right);\\ \\ z=\sqrt2\cdot e^{i(\frac{7\pi}{4}+2\pi n)}" align="absmiddle" class="latex-formula">
2.
z=\frac{i}{(1+i)^2};\\
z=\frac{1}{(1+i)^2}=\frac{i\cdot(1-i)^2}{(1+i)^2(1-i)^2}=\frac{i\cdot(1-2i+(-1))}{(1-(-1))^2}=\frac{i\cdot(-2i)}{2^2}=\frac{2-}{4}=\frac{1}{2}=\\
=\frac12+i\cdot0\\
\frac{i}{(1+i)^2}=\frac{i}{1+2i+i^2}=\frac{i}{1+2i-1}=\frac{i}{2i}=\frac12=\frac12+0\cdot i\\
x=\frac12;\ \ y=0;\\
\rho=\sqrt{x^2+y^2}=\sqrt{(\frac12)^2+0^2}=\sqrt{\frac14}=\frac12;\\
\phi=arctg{\frac{0}{\frac12}}=0;\\
\phi=2\pi n,\ n\in Z;\\
z=\frac12(\cos2\pi n+i\sin2\pi n)\\
z=\frac12\cdot e^{i2\pi n}
3.
(\sqrt3-i)^9=\\
z=\sqrt3-i;\ \ z^9-?\\
x=\sqrt3; y=-1\\
\rho=\sqrt{(\sqrt3)^2+(-1)^2}=\sqrt{3+1}=\sqrt4=2;\\
\phi=arctg\frac y x=arctg\frac{-1}{\sqrt3}=-\frac\pi6+2\pi n=\frac{11\pi}{6}+2\pi n;\\
z=2\cdot e^{i(\frac{11\pi}{6}+2\pi n)};\\
z^9=2^9\cdot e^{9i(\frac{11\pi}{6}+2\pi n)}=512\cdot e^{\frac{99\pi}{6}+18\pi n}=\\
=512\cdot(\cos(\frac{99\pi}{6}+18\pi n)+i\sin(\frac{99\pi}{6}+18\pi n))=\\
|\frac{99\pi}{6}+2\pi n=\frac{96\pi}{6}+\frac{3\pi}{6}+2\pi n=16\pi +\frac\pi2+2\pi n=\frac\pi2+2\pi k\\
z^9=512\cdot\left(\cos(\frac\pi2+2\pi n)+i\sin(\frac\pi2+2\pi n)\right)=512(0+1\cdo i)=512i;\\
(\sqrt3-i)^9=512i;\\
4.
\frac{(-\sqrt3+i)(\cos\frac\pi{12}-i\sin\frac\pi{12})}{1-i}=\frac{(-\sqrt3+i)(\cos\frac\pi{12}-i\sin\frac\pi{12})(1+i)}{(1-i)(1+i)}=\\
=\frac{(-\sqrt3-\sqrt3i+i-1)(\cos\frac{\pi}{12}-i\sin\frac{\pi}{12})}{1+1}=\\
|\cos\frac{\pi}{12}-i\sin\frac{\pi}{12}=\cos(-\frac{\pi}{12})+i\sin(-\frac{\pi}{12})=e^{-\frac{\pi}{12}}|\\
=\frac{(-(\sqrt3+1)-i(\sqrt3-1))\cdot e^{-\frac{\pi}{12}}}{2}=\\
=-\frac{(\sqrt3+1)\cos\frac{\pi}{12}+(\sqrt3-1)\sin\frac{\pi}{12}}{2}+i\frac{(\sqrt3-1)\sin\frac\pi{12}-(\sqrt3-1)\cos\frac\pi{12}}{2}

(11.1k баллов)
0

мы такого ещё даже не проходили