Достроим трапецию до треугольника, продолжив её боковые стороны. Получим треугольник AOD (см. рис.). По условию задачи AM=MD. Значит, OM - медиана треугольника AOD. Свойство медианы: медиана разбивает треугольник на два равновеликих треугольника. Значит, площади треугольников AON и DON равны.
Рассмотрим треугольник BOC. В нём по условию задачи BM=MC, значит OM - медиана и треугольники BOM и COM равновелики.
Площадь трапеции ABMN = разность площадей треугольников AON и BOM. Площадь трапеции NMCD = разность площадей треугольников DON и COM.
Что и требовалось доказать.