Найдите расстояние от точки пересечения медиан прямоугольного треугольника до его катета,...

0 голосов
183 просмотров

Найдите расстояние от точки пересечения медиан прямоугольного треугольника до его катета, равного 12, если гипотенуза равна 15.


Геометрия (2.6k баллов) | 183 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

"египетский" треугольник, подобный (3,4,5). Стороны 9,12,15. Расстояние от основания медианы к гипотенузе (то есть от середины гипотенузы) до катета 12 равно 9/2. А точка пересечения медиан на треть медианы ближе к вершине перяого угла, то есть расстояние от неё до катета 12 составит (2/3)*(9/2) = 3.

 

А можно и так. Медиана к гипотенузе равна 15/2, а точка пересечения медиан лежит на расстоянии (2/3)*(15/2)  = 5 от прямого угла. При этом, если опустить перпендикуляр из этой точки на катет (да любой :)) в данном случае - на катет 12), то поучится ОПЯТЬ "египетский" треугольник, причем самый настоящий - (3,4,5). Доказательство этого совершенно очевидного факта такое - медиана образует с катетами углы, равные углам треугольника, поскольку разбивает треугольник на два равнобедренных. Отсюда следует подобие построенного треугольника исходному.

Ну, вот так само собой и получилось, что расстояние от точки пересечения медиан до катетов 3 и 4. Нужное по задаче расстояние 3.

 

(69.9k баллов)