sqrt{(5-3sqrt{2}cosx-(cosx)^2)}+sqrt{3}sinx=0
sqrt{(5-3sqrt{2}cosx-(cosx)^2)}=-sqrt{3}sinx
(sqrt{(5-3sqrt{2}cosx-(cosx)^2)})^2=(-sqrt{3}sinx)^2
5-3sqrt{2}cosx-(cosx)^2=3(sinx)^2
5-3sqrt{2}cosx-(cosx)^2=3(1-(cosx)^2)
5-3sqrt{2}cosx-(cosx)^2=3-3(cosx)^2)
2-3sqrt{2}cosx+2(cosx)^2=0 | t=cosx
2t^2-3sqrt{2}t+2=0
D=18-4*2*2=2
t1=sqrt{2}
t2=sqrt{2}/2
cosx=sqrt{2} -решений нет, т.к. |cosx|<=1, a sqrt{2}>1
cosx=sqrt{2}/2
x=+-П/4+2Пn, n принадлежит Z