Докажем, что произведение среднего арифметического и среднего гармонического двух чисел равно произведению этих чисел. Пусть есть положительные числа a и b, тогда (a+b)/2 - их среднее арифметическое, а 2/(1/a+1/b) - их среднее гармоническое. Последнюю дробь можно переписать как 2/((a+b)/ab)=2ab/(a+b). Очевидно, что при умножении этой дроби на (a+b)/2 получится ab, то есть произведение чисел. Значит, утром 2 сентября произведение чисел не изменилось, но рассуждая аналогично, мы получаем, что оно не изменится и в каждый следующий день. Значит, оно всегда будет равно 6*7=42.