три числа, сумма которых равна 114 , можно рассматривать как три последовательных члена...

0 голосов
89 просмотров

три числа, сумма которых равна 114 , можно рассматривать как три последовательных члена геометрической прогрессии или как первый, четвертый, двадцать пятый член арифметической прогрессии. найдите эти числа. нужно на завтро!


Алгебра (61 баллов) | 89 просмотров
Дан 1 ответ
0 голосов

Решение :
1 число = а1
2 число = а4 = а1 + 3д
3 число = а25 = а1 + 24д
а1 + а1 + 3д + а1 + 24д = 114 - 1 ( уравнение системы ) ( сократим на 3 )
( а1 + 3д ) / а1 = ( а1 + 24д ) / ( а1 + 3д ) - второе уравнение .
а1 + 9д = 38
( а1 + 3д )^2 = a1 ( a1 + 24д )
Отсюда :
а1 = 2 и д = 4
числа 2 , 14 и 98 .

(814 баллов)
0

вопрос. почему мы делим на а1 и на (а1+3д) и откуда получаем две следующее строчки?