В правильной треугольной пирамиде плоский угол при вершине 60 градусов . Отрезок...

0 голосов
230 просмотров

В правильной треугольной пирамиде плоский угол при вершине 60 градусов . Отрезок соединяющий основание высоты пирамиды с серединой бокового ребра равен 3 см . Найдите площадь полной поверхности пирамиды. Сроооочно надо


Геометрия (235 баллов) | 230 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Условие слегка непонятное - я буду считать, что все грани пирамиды - правильные треугольники. То есть под плоским углом при вершине я буду понимать угол между двумя ребрами. Таким образом, задан тетраэдр.Основанием считается "нижняя" грань, на самом деле все грани одинаковы, но "по привычке" называем основанием то, что внизу, а высотой - высоту, перпендикулярную именно "основанию".

Пусть боковая сторона равна а.

Рассмотрим прямоугольный треугольник, образованный боковой стороной тетраэдра, её проекцией на основание и высотой пирамиды. Ясно, что основание высоты равноудалено от вершин основания, то есть проекция бокового ребра на основание есть радиус R описанной окружности вокруг треугольника со стороной а, то есть R = а*√3/3; (это просто - R = 2/3 от высоты правильного треугольника, а высота равна h = а*sin(60) = a*√3/2; не путать это с высотой пирамиды!).

Заданный отрезок длины 3 является в построенном прямоугольном треугольнике МЕДИАНОЙ, то есть равен половине гипотенузы. А роль гипотенузы играет боковое ребро. Поэтому а = 6 :))

Площадь правильного треугольника со стороной 6 равна a*h/2 = 6^2*√3/4; а всего у нас 4 одинаковых грани, то есть площадь всей поверхности пирамиды равна

36*√3

(69.9k баллов)
0 голосов

правильная пирамида - все углы равны и стороны равны..т.е. все углы по 60 градусов и все стороны по 3 см..отсюда и считайся площадь по формуле площади треугольника.

(382 баллов)