Докажем, что при любых значениях a и b верно равенство
(a+b) 2=a 2+b 2+2ab
или (a+b) 2=a 2+2ab+b 2.
Доказательство.
(a+b) 2=(a+b)(a+b)=a 2+ab+ab+b 2=a 2+b 2+2ab.
Если в эту формулу вместо a и b подставить какие-нибудь выражения,
то опять получится тождество.
Квадрат суммы двух выражений равен сумме квадратов этих выражений
плюс удвоенное произведение первого и второго выражений.